Describing distance: from the plane to spectral triples

Snapshots of modern mathematics from Oberwolfach

Describing distance: from the plane to spectral triples

Geometry draws its power from the abstract structures that govern the shapes found in the real world. These abstractions often provide deeper insights into the underlying mathematical objects. In this snapshot, we give a glimpse into how certain “curved spaces” called manifolds can be better understood by looking at the (complex) differentiable functions they admit.

If you are interested in translating this Snapshot, please contact us at

Mathematical subjects

Geometry and Topology

Connections to other fields



Francesca Arici, Bram Mesland


DOI (Digital Object Identifier)


Download PDF


snapshots: overview

Mathematical subjects

Algebra and Number Theory
Didactics and Education
Discrete Mathematics and Foundations
Geometry and Topology
Numerics and Scientific Computing
Probability Theory and Statistics

Connections to other fields

Chemistry and Earth Science
Computer Science
Engineering and Technology
Humanities and Social Sciences
Life Science
Reflections on Mathematics

These icons are available under the CC BY-SA 4.0 license. Please feel free to use them to classify your own content.
The vector icons can be downloaded here.