Why oscillation counts: Diophantine approximation, geometry, and the Fourier transform

Oberwolfach'tan

Why oscillation counts: Diophantine approximation, geometry, and the Fourier transform

Is it possible to approximate arbitrary points in space by vectors with rational coordinates, with which we, and computers, feel much more comfortable? If yes, can we approximate those points arbitrarily close? In this snapshot, we explore how the geometric configuration of these points influences the answers to these questions. Further, we delve into the closely related problem of counting rational vectors near surfaces. The unlikely tool which helps us in this endeavour is Fourier analysis – the study of waves and oscillations!

If you are interested in translating this Snapshot, please contact us at info@imaginary.org

Matematiksel konular

Cebir ve Sayılar Kuramı
Analiz

Diğer alanlarla ilişkiler

Bilgisayar Bilimeri
Mühendislik ve Teknoloji
Fizik

Yazar(lar)

Rajula Srivastava

Lisans

DOI (Dijital nesne belirteci)

10.14760/SNAP-2025-009-EN

PDF

snapshots: overview

Matematiksel konular

Cebir ve Sayılar Kuramı
Analiz
Eğitim ve Eğitim Bilimi
Ayrık Matematik ve Matematiğin Temelleri
Geometri ve Topoloji
Nümerik ve Hesap Analizi
Olasılık Kuramı ve İstatistik

Diğer alanlarla ilişkiler

Kimya ve Yer Bilimler
Bilgisayar Bilimeri
Mühendislik ve Teknoloji
Finans
Beşeri ve Sosyal Bilimler
Yaşam Bilimleri
Fizik
Matematik Üzerine Düşünceler

Buradaki küçük resimler  CC BY-SA 4.0 lisansıyla sunulmuştur. Kendi içeriğinizin sınıfını belirlemek için bu sembolleri kullanabilirsiniz. Vektör resim olarak şuradan indirebilirsiniz.