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Why osci l lat ion counts:
Diophant ine approximat ion,

geometry, and the
Four ier t ransform

Rajula Sr ivastava 1

Is it possible to approximate arbitrary points in space
by vectors with rational coordinates, with which we,
and computers, feel much more comfortable? If yes,
can we approximate those points arbitrarily close? In
this snapshot, we explore how the geometric configu-
ration of these points influences the answers to these
questions. Further, we delve into the closely related
problem of counting rational vectors near surfaces.
The unlikely tool which helps us in this endeavour is
Fourier analysis – the study of waves and oscillations!

1 Introduct ion

For almost two millennia, humans across civilizations have asked: how well can
an arbitrary real number, like π, be approximated by fractions? Indeed, this
question lies at the heart of a branch of modern mathematics which is now

1 The author is supported by the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) under Germany’s Excellence Strategy - EXC-2047/1 - 390685813 as well as SFB
1060.
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called Diophantine approximation. 2 One of the primary applications of this
area is in cryptography, particularly in the security of encryption algorithms,
where the hardness of certain Diophantine problems ensures the robustness
of cryptographic keys. Moreover, in the field of signal processing, it helps in
minimizing errors in the representation and transformation of signals.

But what does it mean for a real number (call it α) to be well-approximable
by fractions, also called rational numbers? Supposing you had a new classmate
or coworker called α, what would it take for you to know them well? Most of
us will agree that it would require contact which is both close and frequent.
Indeed, the same goes for numbers too! The fundamental idea in Diophantine
approximation is to understand how closely and how often α (the real number,
this time) can be approximated by rationals with a given denominator.

We already know a perfect rational approximation to α when it is a rational:
the number itself! We therefore consider the case when α is irrational, that
means, not a fraction. In 1840, Dirichlet 3 proved that for any irrational
number α and any positive integer N , there exists a fraction p

q with 1 ≤ q ≤ N
such that ∣∣∣∣α − p

q

∣∣∣∣ ≤ 1
qN

≤ 1
q2 .

Since we can choose N to be as big as we please, Dirichlet’s theorem tells us
that α can be approximated by fractions of the form p

q for infinitely many
denominators q (in other words, infinitely often).

The proof of this fundamental result is small enough to fit in a paragraph
(though perhaps not in the margin 4 )! For a real number x, let ⌊x⌋ denote the
greatest integer less than or equal to x, and let

{x} = x − ⌊x⌋

denote its fractional part. For example, {3.14} = 3.14 − 3 = 0.14,
{ 22

7
}

=
22
7 − 3 = 1

7 , {π} = π − 3 = 0.14159265358979323846 . . . , and {3} = 3 − 3 = 0.
The first crucial observation is that when α is irrational, the numbers

{α}, {2α}, . . . , {Nα}

are all distinct from each other. It is a fun exercise to figure out why! 5 In
addition, the fractional part of any number lies in the interval [0, 1]. Since

2 Named after the Greek mathematician Diophantus of Alexandria who lived in the second
century BCE.
3 Johann Peter Gustav Lejeune Dirichlet (1805–1859) was a German mathematician, famous
for fundamental contributions to analytic number theory, Fourier analysis, and mathematical
physics. Among other achievements, he was one of the first to give the modern formal
definition of a function.
4 To understand the joke, see wikipedia.org/wiki/Fermat%27s_Last_Theorem.
5 Hint: Assume {nα} − {mα} = 0 for n ̸= m. What would this imply?
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Figure 1: Dirichlet’s theorem with N = 5 (the red dots demarcate intervals of
length 1

N ).

further {0} = {1} = 0, that is, the fractional parts of both endpoints of this
interval are the same, we can think of them as being the same with respect
to fractional parts. Therefore, gluing the end points together transforms the
interval [0, 1] into a circle, which represents the fractional parts. Consequently,
the numbers {α}, {2α}, . . . , {Nα} can be visualised as N distinct points on this
circle of circumference 1 (see Figure 1).

For all of them to be accommodated, there have to be at least two which
lie within a distance of 1

N from each other. In other words, we are guaranteed
positive numbers q1 < q2 ≤ N such that

{(q2 − q1)α} ≤ 1
N

.

Let q = q2 − q1. Then q ≤ N and the above inequality tells us that for the
integer p = ⌊qα⌋ it is true that

|qα − p| = |{qα}| ≤ 1
N

.

Dividing both sides above by q then proves Dirichlet’s theorem.
At this point, it is natural to wonder if it is possible for rationals to get even

closer to α, infinitely often? More precisely, can we replace 1
q2 by, say, 1

q3 or
more generally, 1

qs for s > 2, and still conclude the above? Note that we ask for
a closer approximation of α by rationals, when we increase the value of s. At
some point, it simply becomes too much to ask for!

Indeed, in 1924, Khintchine 6 showed that for s > 2, the set of numbers α

6 Alexandre Iakovlevitch Khintchine (1894–1959) was a Russian mathematician and one of
the most significant contributors to the Soviet school of probability theory.
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for which it is true that∣∣∣∣α − p

q

∣∣∣∣ ≤ 1
qs

for infinitely many p

q
∈ Q,

is of negligible size. Going back to our analogy with the new classmate or
coworker, this says that while it is possible to have a lot of friends, it is virtually
impossible to have too many (in fact, infinitely many) very close friends!

The above result can be easily generalized to higher dimensions as well.
There, the question is to approximate an n-dimensional vector α by vectors
with rational entries of the same denominator q. This means, the approximating
vectors have entries p1

q , . . . pn

q ∈ Q. However, the cut-off point for the exponent
now is s > 1

n + 1 (instead of s > 2 in the 1-dimensional case). More precisely,
Khintchine’s theorem says that for s > 1

n + 1, the set of vectors α ∈ Rn which
can be approximated very closely is of negligible size.

2 Count ing rat ional points near surfaces

We now introduce some geometric flavour to our setup! Let S be a curve or a
surface in three dimensions (the entire discussion remains valid, and even more
challenging, in higher dimensions). Now S can be a two-dimensional surface
like a plane (think of a sheet of paper, see Figure 3) or a sphere (a football); or
a one-dimensional curve such as a circle (ring) or a helix (like the model of a
DNA strand), see Figure 2.

x

y

z

Figure 2: A helix, in blue, and a planar circle, in red.

Suppose we now want to approximate points lying on S by rational vectors.
Can we prove an analogue of Khintchine’s theorem for S? In other words, can
we say that for s > 1

n + 1 (in our case: n = 3 and s > 4
3 ), the set of points α

on S which can be approximated very closely, is of negligible size? Since S is a
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curve or a surface, it has no volume. Therefore, the points on S form a very
sparse or singular collection. Consequently, approximating them with rationals
is a much more delicate issue. On the contrary, the geometry of S itself gives
us a lot of structural information about how these points are arranged in space!

The question of proving Khintchine’s theorem for S is closely related to the
problem of counting the number of three-dimensional rational points in “close
proximity” to S. Let us use the parameter δ to denote the maximal distance
we allow. How small δ can be taken depends on how finely these rationals
are distributed. In other words, this is the distance between two neighboring
fractions in the three-dimensional lattice formed by them, see Figure 3 for an
illustration of the lattice. It is determined by the size of their denominator q
(the bigger it is, the finer the lattice). We now stipulate that q is bounded by
some number Q.

Question 1: Let NS(δ, Q) denote the number of rational points of denomi-
nator q with 1 ≤ q ≤ Q, within a distance of δ from S, where δ < 1

Q . Can we
find a formula for NS(δ, Q), in terms of δ and Q? If yes, then in what range
of δ (in terms of Q) is the formula true?

When S is a planar sheet, which is, say, horizontal (parallel to the x-y-plane),
the above question has a very easy (albeit uninteresting) answer. In this case,
it does not matter how far or near we are to S, it will always “catch” the
maximum possible number of fractions. The geometric reason behind this is
that a plane is completely flat and therefore aligns fully with the lattice formed
by rational points, see Figure 3.

To work this out more precisely, we choose a specific sheet, namely

S = {(x, y, 0) ∈ R3 : x, y ∈ [0, 1]}.

This is the square with side length 1 lying on the x-y-plane. The aim is to
find for every number q with 1 ≤ q ≤ Q rational points (p1

q , p2
q , p3

q ) within a
distance of δ from S. Since S is parallel to the lattice of rational points, the
distance from S is completely determined by the z-coordinate and thus given by
| p3

q |. As we are interested in δ < 1
q , also | p3

q | < 1
q and hence p3 = 0. Thus, all

the rational points of interest lie on the plane and have coordinates ( p1
q , p2

q , 0),
where both p1 and p2 can take any integer value between 0 and q. Therefore,
for each q we obtain a possible number of (q + 1)2 rational points within a
distance of δ from S. Consequently,

NS(δ, Q) ≈
Q∑

q=1
(q + 1)2 ≈ Q3.

However, if S is not completely flat, the question gets far more interesting. If
the surface has random distortions, one expects the number of fractions within
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Figure 3: A planar sheet aligned parallel to a three-dimensional lattice of
rational points.

a distance of δ to S to be proportional to an appropriate power of δ times the
maximum number of such fractions allowed. This power of δ is determined by
the number of constraints used to describe S; for a two-dimensional surface (as
the sheet above) this is one (the remaining dimension), while for a curve this
will be two.

3 The Four ier t ransform enters the picture

The previous discussion tells us that the geometry of the surface S plays a
crucial role in determining the number of rational points close to S. However,
what does it have to do with the Fourier transform?

Fourier analysis, in contrast to Diophantine approximation, is a young branch
of mathematics. Its foundations were laid about two centuries ago by Fourier’s 7

treatise Théorie analytique de la chaleur [2]. In this, he proposed that any
reasonable function (say, a heat wave) can be decomposed as an infinite sum of
simple sinusoidal waves of different frequencies (oscillations). This breakthrough
idea was the precursor of what is now called the Fourier transform: a tool
ubiquitous in mathematics, science, engineering, and information technology
alike.

Why do we even care about the decomposition of a function into oscillations?
This has many everyday applications outside of mathematics. Say, for example,
we have a signal from a music file which we want to store economically. Then,
the Fourier transform extracts all the frequencies which make the signal up.

7 Jean-Baptiste Joseph Fourier (1768–1830) was a French mathematician, famous for initi-
ating the investigation of Fourier series and developing the Fourier transform.
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Thus, we can choose a threshold above which we decide to discard all occurring
frequencies, since we know that this will not affect the signal too much. Putting
the remaining frequencies together restores a signal that is very close to the
original. This is the way mp3-files work. In short, the Fourier transform allows
to disassemble information into components, which might be more fundamental
and useful to work with.

Although the question of seeking new ways to decompose (or stitch back) a
function into (or from) simpler oscillatory components remains fundamental,
the techniques have evolved naturally into several directions. In the plane
or three dimensions, the geometry and curvature of the shapes around which
the frequencies of the component waves are concentrated can reveal a lot of
information about a function. In such cases, the waves are often bunched
together into “packets” or “tubes”, and geometrical questions about how these
are arranged become important.

Let w be a nice, smooth function which is zero except in a tiny region of
thickness δ around the surface S. A fundamental approach to understanding
the geometry of S using Fourier analysis would be to study how the Fourier
transform of w is concentrated in the frequency domain 8 and where it decays.
In other words, we would like to see how the geometry of S influences the
arrangement of the constituent frequencies of w.

3.1 Dual i ty

In general, gaining a precise understanding of the decay of the Fourier transform,
and linking it to the geometry of S, is a highly delicate and complicated matter.
The degree of difficulty increases as the dimension of S decreases; for example,
the Fourier transform of a function which lives near one-dimensional curves can
be incredibly complicated!

However, at least when S is a two-dimensional surface in space, we have
more tools at our disposal. As the planar example in the beginning already
showed, complete flatness prevents interesting things from happening. Thus, it
is more promising to deal with surfaces with curvature. The perfect example is
that of a sphere, though some might also prefer the two-dimensional paraboloid
(see Figure 4).

Suppose that S is a paraboloidal surface as in Figure 4, which has no flat
parts. If the function w lives in a small neighborhood of S, it turns out that
its Fourier transform is also concentrated around another two-dimensional
surface S∗ in the frequency domain, which we call the dual of S. Moreover (and
it takes some work to see this), the surface S∗ also has no flat parts. In other

8 This is the space where the Fourier transform of a function lives. The name is motivated
from the idea to disassemble an oscillation into its constituting frequencies.
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Figure 4: The paraboloid which is described by the equation z = x2 + y2.

words, S and S∗ essentially turn out to be geometric twins!
On the contrary, what if S does have points around which it is “flat” to

a certain degree? Things get even more interesting in such situations! If S
is a two-dimensional, locally flat surface, its dual S∗ is a locally rough two
dimensional surface, with spikes at isolated points! Consider the example
illustrated in Figure 5.

3.2 Exploi t ing osci l lat ion

Using the Fourier transform converts the counting problem around S to a dual
counting problem around S∗. Moreover, fortunately for us, our notion of duality
turns out to have a great property: taking duals twice brings us back to the
original surface

(S∗)∗ = S.

However, is this repeated switching between the original and dual counting
problems getting us any closer to obtaining a good estimate for the counting

(a) The surface which is described by the
equation z =

(
x2 + y2)20.

(b) Its dual surface.

Figure 5: A locally flat surface S and its locally “spiky” dual S∗.
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function associated to S? This incessant ping-pong would be of no benefit to
us unless something significant was happening at each step to give us some
leverage! This comes in the form of a powerful tool from Fourier analysis called
the method of stationary phase. This method gives a precise description of the
Fourier transform of functions living on surfaces without flat parts; in particular,
its decay (or lack of) in different directions. For surfaces with flat parts, we
need an even more elaborate analysis.

We exploit this information about the decay of the Fourier transform using
a fundamental tool in analytic number theory; the Poisson summation formula
equates evaluations of a function at discrete points of a periodic lattice to
discrete evaluations of its Fourier transform. A refined geometric knowledge
about the decay of the Fourier transform of functions which live on nice surfaces
enables us to obtain the desired upper bounds on the number of rational points
in tiny regions around these shapes. The set of well-approximable points on
these surfaces, by their very definition, are contained in infinitely many such
balls around fractions with shrinking radii. Thus, obtaining a tight bound on the
number of these fractions, and therefore balls, enables us to estimate the volume
of the set of these approximable points. If the number of fractions is small
enough, in the limiting case, we can show that the volume of the intersection of
these balls has to be negligible.

We desist from going into further details as it is beyond the scope of this
snapshot. However, for the interested reader, we end our write-up with a brief
description of a few older and recent results in this area, which has seen some
exciting developments in the last few years! The list is by no means exhaustive.

4 State of the ar t and fur ther reading

The random model for the number of rational points within a certain distance
of S, as described in Section 2, was proven to be correct for planar curves
with non-vanishing curvature in the seminal works [4, 9]. The influential
paper [3] established the same for surfaces of dimension one less than the
ambient space and with non-vanishing curvature (like spheres). More recently,
in [8], N. Technau and the author showed that the random model is true even
for a special class of surfaces where the curvature vanishes at exactly one point
(or a few isolated points).

The breakthrough paper [1] published last year established the convergence
case of Khintchine’s theorem for surfaces of arbitrary dimension under a mild
curvature condition. Shortly afterwards, in the joint work [7] with D. Schindler
and N. Technau, the author developed a novel combination of Fourier analytic
methods and deep results from homogeneous dynamics, to make new progress
on answering Question 1 for these general surfaces.
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Finally, for an introduction to related ideas from Fourier analysis and Dio-
phantine approximation, we invite the reader to consult Snapshots 6/2023 [5],
1/2024 [10], 6/2020 [11], and 3/2019 [6].
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