These icons are available under the CC BY-SA 4.0 license. Please feel free to use them to classify your own content.
The vector icons can be downloaded here.
Is there a smooth lattice polytope which does not have the integer decomposition property?
Instantanés de recherche mathématique à Oberwolfach
Is there a smooth lattice polytope which does not have the integer decomposition property?
We introduce Tadao Oda’s famous question on lattice polytopes which was originally posed at Oberwolfach in 1997 and, although simple to state, has remained unanswered. The question is motivated by a discussion of the two-dimensional case – including a proof of Pick’s Theorem, which elegantly relates the area of a lattice polygon to the number of lattice points it contains in its interior and on its boundary.
If you are interested in translating this Snapshot, please contact us at info@imaginary.org
Sujet mathématique
Algèbre et théorie des nombres
Mathématiques discrètes et fondements des mathématiques
Géométrie et Topologie
Licence
DOI
10.14760/SNAP-2025-008-EN
Télécharger PDF
snapshots: overview
Sujet mathématique
Algèbre et théorie des nombres
Analyse
Pédagogie et éducation
Mathématiques discrètes et fondements des mathématiques
Géométrie et Topologie
Calcul numérique et calcul scientifique
Théorie des probabilités et statistique
Liens avec d'autres domaines
Chimie et sciences de la terre
Informatique
Ingénierie et technologie
Finances
Humanités et sciences sociales
Sciences de la vie
Physique
Pensées mathématiques