
Snapshots of modern mathematics
from Oberwolfach

№ 8/2025

Is there a smooth lat t ice polytope
which does not have the

integer decomposi t ion proper ty?

Johannes Hofscheier 1 • Alexander Kasprzyk 2

We introduce Tadao Oda’s famous question on lattice
polytopes which was originally posed at Oberwolfach
in 1997 and, although simple to state, has remained
unanswered. The question is motivated by a discus-
sion of the two-dimensional case – including a proof
of Pick’s Theorem, which elegantly relates the area
of a lattice polygon to the number of lattice points it
contains in its interior and on its boundary.

1 Introduct ion

Lattice polytopes are fundamental objects in mathematics and play a crucial
role in a broad range of subjects such as discrete and algebraic geometry, algebra,
combinatorics, coding theory, and optimisation theory. They arise naturally in
a variety of unexpected or even surprising ways. Consider the following classical
question from enumerative combinatorics, for instance.

Question 1. How many monomials in three variables of a given degree m are
there?

1 Johannes Hofscheier was supported by a Nottingham Research Fellowship.
2 Alexander Kasprzyk was supported by EPSRC Fellowship EP/N022513/1.

1



z y

x

(a)

z2 yz y2

xz xy

x2

(b)

z3 yz2 y2z y3

xz2 xyz xy2

x2z x2y

x3

(c)

Figure 1: Interpreting monomials in three variables x, y, and z as lattice points
in a triangle, for (a) degree 1, (b) degree 2, and (c) degree 3.

A monomial is a product of (powers of) certain variables; its degree is the
sum of the exponents as they appear in the product. We thus wish to find the
total number of all triples of non-negative integers whose sum equals a given
integer m.

Let x, y, and z be the three variables in Question 1. We consider some
examples first, and we obtain three monomials of degree 1, six monomials of
degree 2, and ten monomials of degree 3; see Figure 1. In the process, we see
that the monomials in x, y, and z of degree m can be arranged in a triangular
shape where the exponent of x decreases from the top down, and the exponent
of z decreases from the left to the right. The exponent of the remaining variable
y is completely determined by the two other exponents and the total degree m.
We conclude that the number of monomials in three variables of a given degree
equals the number of points in a certain triangle, as illustrated by Figure 1.

More precisely, the number of monomials in x, y, and z of degree m equals
the number of lattice points – that is, points with integer-valued coordinates – in
the triangle with vertices at (0, 0), (m, 0), and (m, m). In other words, let T be
the triangle with the vertices (0, 0), (1, 0), and (1, 1), let mT = {mv | v ∈ T} be
the m-th dilation of T , and let LT (m) = |mT ∩ Z2| count the number of lattice
points in mT . Then, the number of monomials in three variables of degree m
equals LT (m).
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In order to answer Question 1, we thus wish to find a formula for LT (m).
The set of all lattice points contained in the triangle mT can be constructed by
removing the diagonal from a square of side length m + 1 and, subsequently,
discarding one of the two resulting congruent triangles. 3 From this construction,
it can be seen that a formula as desired is given by

LT (m) = (m + 2)2 − (m + 2)
2 = 1

2m2 + 3
2m + 1 .

Notice that the leading coefficient coincides with the area of T . This is not a
coincidence but part of a bigger story known as Ehrhart theory.

Our goal is to introduce a famous question asked by Tadao Oda at Ober-
wolfach in 1997. Roughly speaking, Oda wondered whether the lattice points
within a polytope, given that it is of a certain type, always satisfy an elegant
counting property; see Question 2 at the end of this snapshot for a precise
statement. It will become apparent that a certain instance of this problem is
related to Question 1 in that, in view of how we counted the monomials, it
amounts to the question whether each monomial of degree m can be written as
a product of m variables. Of course, one immediately sees that this is the case.
However, Oda’s question is not so easy in full generality; although simple to
state, it remains unanswered.

Let us now introduce the general picture. We work with the lattice of integral
points Zd ⊂ Rd, that is, the set which consists of all points in d-dimensional
space whose coordinates are integers. A subset C ⊂ Rd is called convex if every
straight line segment which connects two points in C lies entirely within C.
The convex hull of a set of points B ⊂ Rd is the inclusion-wise smallest subset
conv(B) ⊂ Rd which is convex and contains B. For B = {v1, . . . , vn}, an
alternative description is as follows:

conv(v1, . . . , vn) =
{

n∑
i=1

λivi

∣∣∣∣∣ λ1, . . . , λn ∈ [0, 1],
n∑

i=1
λi = 1

}
.

The term lattice polytope shall describe the convex hull P = conv(v1, . . . , vn)
of a finite number of lattice points v1, . . . , vn.

As before, the m-th dilation of P is the polytope mP = {mv | v ∈ P}. The
value of the Ehrhart function LP at m ∈ Z≥0 is defined to be the number of
lattice points LP (m) = |mP ∩ Zd| in mP . The dimension of P , denoted by
dim(P ), is the dimension of the smallest affine subspace containing P . 4

3 Note that a square with side length m + 1 contains (m + 2)2 lattice points. The diagonal
contains m + 2 lattice points.
4 The term affine subspace refers to a point, line, plane, . . . in Rd. For example, a non-
degenerate triangle is contained in a plane but in no line; therefore, such a triangle is of
dimension 2.
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Figure 2: Computing the area of a lattice polygon using Pick’s Theorem. There
are 23 interior lattice points and 16 boundary lattice points.

Theorem 1 (see [3, 4]). There exists a polynomial f of degree dim(P ) with
rational coefficients such that LP (m) = f(m) for all m ∈ Z≥0. Furthermore,
the leading coefficient of f coincides with the Euclidean volume vol(P ) of P .

Theorem 1 allows us to interpret LP as a polynomial of degree dim(P ) which
we call the Ehrhart polynomial of P . That the leading coefficient coincides with
the volume of the polytope P is surprising. However, if P is a polygon, that is,
if P is a polytope of dimension 2, then the relationship between the area of P
and the lattice points it contains can be made even more precise.

Theorem 2 (Pick’s Theorem). For a lattice polygon P ⊂ R2, the Euclidean
volume vol(P ) is given by the formula

vol(P ) = |P ◦ ∩ Z2| + |∂P ∩ Z2|
2 − 1 .

Here, |P ◦ ∩ Z2| denotes the number of interior lattice points, and |∂P ∩ Z2|
denotes the number of boundary lattice points of P .

Let us use Pick’s Theorem to compute the area of the polygon P shown in
Figure 2. It can be seen that P has 23 interior lattice points and 16 boundary
lattice points, so its area is given by

vol(P ) = 23 + 16
2 − 1 = 30 .
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2 Proof of Pick’s Theorem

The proof of Pick’s Theorem contains numerous beautiful ideas and constructions
from Ehrhart theory. Since several of these play an important role in motivating
Oda’s Oberwolfach question, we give a proof here. The fundamental idea is to
proceed by induction on the number of lattice points |P ∩ Z2|. 5

2.1 The base case

We assume that P is a triangle whose vertices v1, v2, and v3 are its only lattice
points; that is, |P ∩ Z2| = 3. Such triangles are called empty. We will show
that, in this case, v1, v2, and v3 constitute an affine basis of Z2; that is, the
difference vectors v1 −v3 and v2 −v3 form a lattice basis of Z2. 6 Let us assume
this for a moment and show how it implies Pick’s Theorem in the base case.

By assumption, v1 − v3 and v2 − v3 form a lattice basis of Z2. The
2 × 2-matrix A whose rows are these difference vectors is invertible over Z. In
other words, there exists another 2 × 2-matrix B with entries in Z such that the
matrix product AB equals the identity matrix, and thus the determinant 7 of
A must itself be invertible over Z; that is, the determinant of A is 1 or −1. It
is a geometrical fact that the absolute value of the determinant det( a

b ) of the
2 × 2-matrix with rows a, b ∈ Z2 equals the area of the parallelogram spanned
by a and b. Hence, the area of P equals 1/2| det(A)| = 1/2 = 0 + 3/2 − 1, as
desired.

It remains to show that v1, v2, and v3 together form an affine basis of Z2.
Let P denote the parallelogram spanned by v1 − v3 and v2 − v3; that is,

P = {λ1v1 + λ2v2 − (λ1 + λ2)v3 | 0 ≤ λi ≤ 1} .

Such a parallelogram is shown in Figure 3. We claim that the only lattice
points contained in P are its vertices 0, v1 − v3, v2 − v3, and v1 + v2 − 2v3.
Indeed, the triangle with the vertices 0, v1 − v3, and v2 − v3 is empty, and so
its opposite triangle, that is, the triangle with the vertices v1 − v3, v2 − v3,
and v1 + v2 − 2v3 which covers the other half of P, is also empty. Certainly,

5 This means that the theorem is first proved for polygons containing exactly three lattice
points (Section 2.1). In a second step, it is proved that if the statement of the theorem holds
for all polygons which contain at most N lattice points, then it also holds for all polygons
containing N + 1 lattice points, where N ≥ 3 is any integer (Section 2.2). As a consequence,
the theorem must then hold for all integers N ≥ 3.
6 The vectors v1, . . . , vd ∈ Zd are said to form a lattice basis if each vector v ∈ Zd

admits a unique representation of the form v = λ1v1 + · · · + λdvd for λ1, . . . , λd ∈ Z; the
d + 1 elements v1, . . . , vd+1 ∈ Zd are said to form an affine basis if the difference vectors
v1 − vd+1, . . . , vd − vd+1 form a lattice basis.
7 The value of the determinant of a 2 × 2-matrix

(
a b
c d

)
is given by the expression ad − bc.
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Figure 3: Tiling the plane with translations of a parallelogram which comes
from an empty triangle with the vertices v1, v2, v3.

the set {P + v | v ∈ Z2} of all translations of P tiles the plane, as illustrated
in Figure 3, from which we may observe that every lattice point in Z2 is a
vertex of a lattice translation of P. Hence, each x ∈ Z2 can be expressed as a
linear combination x = k1(v1 − v3) + k2(v2 − v3) for k1, k2 ∈ Z. Moreover, this
representation is unique, so v1, v2, and v3 together form an affine basis of Z2.

2.2 The induct ive step

Let us assume Pick’s Theorem is valid for all lattice polygons Q ⊂ R2 with
|Q ∩ Z2| ≤ N for some N ≥ 3. We need to show that it then holds for all lattice
polygons P with |P ∩ Z2| = N + 1. Let P be such a polygon. The inductive
step splits into two cases: either there are exactly three lattice points on the
boundary ∂P of P , or |∂P ∩ Z2| > 3.

If |∂P ∩ Z2| = 3, then the interior P ◦ of P contains at least one lattice
point v. The three line segments connecting v with the three vertices of P split
the polygon into three subpolygons P1, P2, and P3, as illustrated by Figure 4.
We shall count the lattice points in each of the Pk, k = 1, 2, 3, and relate
these counts to the number of lattice points in P . Let ik = |P ◦

k ∩ Z2|, and let
bk = |∂Pk ∩ P ◦ ∩ Z2| = |∂Pk ∩ Z2| − 2, for k = 1, 2, 3.

Since |Pk ∩ Z2| ≤ N for k = 1, 2, 3, we can apply our initial assumption on
the validity of Pick’s Theorem for lattice polygons containing at most N lattice
points to each of the polygons P1, P2, P3, and we obtain

vol(Pk) = |P ◦
k ∩ Z2| + |∂Pk ∩ Z2|

2 − 1

= ik + bk + 2
2 − 1 .
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Figure 4: A lattice polygon (a) with exactly three boundary lattice points is
cut (b) into three subpolygons P1, P2, and P3. Here, b1 = 4, b2 = 3,
b3 = 2, i1 = 1, and i2 = i3 = 0.

The area of P equals the sum of the areas of the subpolygons P1, P2, and P3. By
further counting the lattice points in each of the three subpolygons separately,
we arrive at the following chain of equalities:

vol(P ) =
3∑

k=1
vol(Pk)

=
3∑

k=1

(
ik + bk + 2

2 − 1
)

=
3∑

k=1
ik +

∑3
k=1 bk

2

= |P ◦ ∩ Z2| + 1
2

= |P ◦ ∩ Z2| + 3
2 − 1

= |P ◦ ∩ Z2| + |∂P ∩ Z2|
2 − 1 .

Notice that each lattice point which lies on the interior parts of the dissecting
lines is counted twice by the term

∑3
k=1 bk, except for v, which is counted three

times. This is accounted for by the addition of 1/2 in the fourth line.
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Figure 5: A lattice polygon (a) with four or more lattice points on its boundary
can be split (b) into two subpolygons P1 and P2. Here, i1 = 4,
i2 = 14, b1 = 7, b2 = 11, and i = 5.

If |∂P ∩ Z2| > 3, we can find v, w ∈ ∂P ∩ Z2 such that the line segment
connecting v and w divides P into two subpolygons P1 and P2 with |Pk∩Z2| ≤ N
for k = 1, 2. This is illustrated by Figure 5. We again count the number of
lattice points in the subpolygons P1 and P2, and we relate these counts to the
number of lattice points in P . Let ik = |P ◦

k ∩Z2|, and let bk = |(∂Pk \ P ◦) ∩Z2|
be the number of boundary lattice points of Pk that are not contained in the
interior of P . By i we denote the number of interior lattice points in the
line segment from v to w. Since |Pk ∩ Z2| ≤ N , we can apply the inductive
hypothesis to obtain

vol(Pk) = ik + bk + i

2 − 1 .

The area of P equals the sum of the areas of P1 and P2; hence,

vol(P ) = vol(P1) + vol(P2)

=
(

i1 + b1 + i

2 − 1
)

+
(

i2 + b2 + i

2 − 1
)

= (i1 + i2 + i) + b1 + b2

2 − 2

= |P ◦ ∩ Z2| + |∂P ∩ Z2|
2 − 1 .

Regarding the final equality, notice that i1 + i2 + i = |P ◦ ∩Z2|, whereas b1 + b2
counts the lattice points on the boundary of P , counting v and w twice, however.
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Figure 6: The cone CT over the empty triangle T , affinely embedded into R3.

3 Oda’s Oberwolfach quest ion

Recall our reinterpretation of Question 1 as a problem on the number of lattice
points in dilations of the empty triangle T with vertices at (0, 0), (1, 0), and (1, 1);
the lattice points contained in the set T ∩ Z2 each correspond to a monomial of
degree 1. We now construct a single combinatorial object which simultaneously
encodes the lattice points (and hence their counts) in all dilations mT , m ∈ Z≥0.

We begin by identifying R2 with the subset R2 × {1} of R3; in other words,
we think of the plane as lying inside 3-dimensional space at height 1. In
this copy of R2, we consider the triangle T . The cone over T is defined as
CT = {λ(x, 1) | λ ∈ R≥0, x ∈ T}; it is depicted in Figure 6. We may think
of CT as the union of all half-lines that start at the origin and pass through a
point in T × {1}. The cross-section of CT at height m ∈ Z≥0, or, more precisely,
CT ∩ {(x, y, z) | z = m} = (mT, m), can be identified with the dilation mT of T .
Hence, the cone CT encodes the lattice points in all dilations of T .

This construction can be generalised to arbitrary lattice polytopes P ⊂ Rd.
Indeed, the cone over P can be defined as

CP = R≥0(P × {1})
= {λ(x, 1) | λ ∈ R≥0, x ∈ P} .

As before, the cross-section of CP at height m ∈ Z≥0 can be identified with the
dilation mP .
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Figure 7: Every two-dimensional polygon can be covered by empty triangles.

3.1 The integer decomposi t ion proper ty

A lattice polytope P ⊂ Rd is said to have the integer decomposition property
if each lattice point in CP at height m can be written as the sum of m (not
necessarily distinct) lattice points at height 1.

Example 1. If the polytope under consideration is an empty triangle T , this
means that for all (x, m) ∈ CT ∩ Z3 there exist (not necessarily distinct) points
(x1, 1), . . . , (xm, 1) ∈ CT ∩Z3 such that (x, m) = (x1, 1) + · · · + (xm, 1). Indeed,
every empty triangle T has the integer decomposition property; the interested
reader is invited to think about why this is the case.

It is natural to ask which other lattice polytopes have the integer decompo-
sition property. Let us study some important classes of lattice polytopes for
which this question has been resolved.

Example 2. We generalise empty lattice triangles to arbitrary dimension. If
v0, . . . , vd form an affine basis of Zd, their convex hull S = conv(v0, . . . , vd) is
called a d-dimensional unimodular simplex. We claim that such a simplex S has
the integer decomposition property. Indeed, since v0, . . . , vd is an affine basis
of Zd, it follows that (v0, 1), . . . , (vd, 1) is a lattice basis of Zd+1. Hence, every
lattice point (x, m) in the cone CS can be expressed as a linear combination
(x, m) =

∑d
i=1 λi(vi, 1), where λi ∈ Z. Since (x, m) is in CS , it follows that

λi ≥ 0, and thus S has the integer decomposition property.

Example 3. Every two-dimensional lattice polygon can be covered by empty
lattice triangles; Figure 7 provides an example of how this can be achieved.
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Figure 8: If (a) triangles Si cover a polygon P , then (b) the cones CSi cover CP .

More generally, suppose P is a lattice polytope in Rd which is covered by
unimodular simplices S1, . . . , Sn; that is, P = S1 ∪ · · · ∪ Sn. Such a covering is
called a unimodular covering of P . The cone CP over P is covered by the cones
CS1 , . . . , CSn

over the simplices Si; Figure 8 illustrates this for the case d = 2.
Hence, every lattice point in CP at height m can be written as a sum of m
lattice points at height 1, namely those which are located at height 1 in the
corresponding cone CSi . In particular, all two-dimensional lattice polygons have
the integer decomposition property, since they admit a unimodular covering. In
higher dimensions, it is typically very hard to determine whether a unimodular
covering even exists. 8

Example 4. Reeve [10] describes an infinite family of tetrahedra whose members
we now call the Reeve tetrahedra; see Figure 9. Let

Rr = conv((0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, r))

8 The unimodular coverings in Figures 7 and 8 have the property that the simplices intersect
along common faces. Such coverings are called triangulations. In dimension 2, a unimodular
triangulation always exists. However, there exist higher-dimensional lattice polytopes that
admit a unimodular covering but no unimodular triangulation [5, Example 10].
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Figure 9: The Reeve tetrahedron Rr.

for some r ∈ Z≥1. The Reeve tetrahedron Rr contains exactly four lattice
points, has no interior lattice points, and vol(Rr) = r/6. Moreover, the number
of lattice points in its m-th dilation is given by

LRr
(m) = r

6m3 + m2 +
(

2 − r

6

)
m + 1 .

It is readily seen that Rr does not admit a unimodular covering when r > 1,
as its four vertices do not form an affine lattice basis in this case. This
stands in contrast with the two-dimensional case, where every empty triangle
is unimodular. The existence of empty simplices whose vertices do not form
an affine basis is what makes the study of higher-dimensional lattice polytopes
much richer – and harder – than that of polygons. In particular, we should not
expect a direct analogue of Pick’s Theorem in dimension 3 or more.

We now show that Rr does not satisfy the integer decomposition property.
Let Cr be the cone over Rr. The set of lattice points Cr ∩Z4 forms a semigroup
with Z≥0-basis given by

(0, 0, 0, 1), (1, 0, 0, 1), (0, 1, 0, 1), (1, 1, 1, 1) if r = 1, or
(0, 0, 0, 1), (1, 0, 0, 1), (0, 1, 0, 1), (1, 1, r, 1),
(1, 1, 1, 2), . . . , (1, 1, r − 1, 2) if r > 1.

In particular, for r > 1 the point (1, 1, 1, 2) ∈ Cr at height 2 cannot be written
as the sum of two points at height 1.
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3.2 The smooth case

Let ei ∈ Rd denote the i-th standard basis vector, and let us write

cone(X) =
{

n∑
i=1

λixi

∣∣∣∣∣ n ∈ Z≥0, λi ∈ R≥0, xi ∈ X

}

for the convex cone generated by a (not necessarily finite) subset X ⊂ Rd. A
cone C ⊂ Rd is called smooth if it can be identified with cone(e1, . . . , ed) via
a change of basis of Zd. In other words, it is called smooth if there exists a
lattice basis b1, . . . , bd of Zd with the property that the map Zd → Zd sending
(x1, . . . , xd) 7→

∑d
k=1 xkbk ∈ Zd is invertible and sends cone(e1, . . . , ed) to C.

A lattice polytope P ⊂ Rd is called smooth if cone(P − v) is smooth for
every vertex v of P . Oda’s Oberwolfach question now asks whether smoothness
is a sufficient condition for a lattice polytope to have the integer decomposition
property.

Question 2 (Oda’s Oberwolfach question [9]). Does every smooth lattice
polytope have the integer decomposition property?

An indication that this may indeed be the case lies in the fact that the
smoothness property of a polytope P ensures that each of its corners is covered
by a dilation of a unimodular simplex, and in the speculation that it should
be possible to extend these corner covers sufficiently far inside so as to yield a
unimodular covering of the polytope P .

Despite many efforts to answer Question 2, it is still wide open. Moreover,
there is currently no general consensus on the likely answer. Substantial efforts
have been made in order to find a counterexample; for instance, such an effort
is due to Bruns [2]. Meanwhile, the study of Oda’s Oberwolfach question has
led to a considerable number of beautiful results on lattice polytopes which
were obtained by a variety of authors [1, 6, 7, 8].

References

[1] M. Beck, C. Haase, A. Higashitani, J. Hofscheier, K. Jochemko, L. Katthän,
and M. Michałek, Smooth centrally symmetric polytopes in dimension 3
are IDP, Annals of Combinatorics 23 (2019), no. 2, 255–262.

[2] W. Bruns, The quest for counterexamples in toric geometry, Commutative
algebra and algebraic geometry (CAAG-2010), Lecture Notes Series of the
Ramanujan Mathematical Society 17 (2013), 45–61.

13



[3] E. Ehrhart, Sur les polyèdres homothétiques bordés à n dimensions, Comptes
Rendus Hebdomadaires des Séances de l’Académie des Sciences 254 (1962),
988–990.

[4] , Sur un problème de géométrie diophantienne linéaire, II. Systèmes
diophantiens linéaires, Journal für die Reine und Angewandte Mathematik
227 (1967), 25–49.

[5] R. T. Firla and G. M. Ziegler, Hilbert bases, unimodular triangulations,
and binary covers of rational polyhedral cones, Discrete and Computational
Geometry 21 (1999), no. 2, 205–216.

[6] J. Gubeladze, Convex normality of rational polytopes with long edges,
Advances in Mathematics 230 (2012), no. 1, 372–389.

[7] C. Haase and J. Hofmann, Convex-normal (pairs of) polytopes, Canadian
Mathematical Bulletin 60 (2017), no. 3, 510–521.

[8] C. Haase, A. Paffenholz, L. C. Piechnik, and F. Santos, Existence of
unimodular triangulations – positive results, Memoirs of the American
Mathematical Society 270 (2021), no. 1321.

[9] T. Oda, Problems on Minkowski sums of convex lattice polytopes,
arXiv:0812.1418, 2008.

[10] J. E. Reeve, On the volume of lattice polyhedra, Proceedings of the London
Mathematical Society, Third Series 7 (1957), 378–395.

14

https://arxiv.org/abs/0812.1418


Johannes Hofscheier is an Assistant
Professor in Geometry at the Universi ty
of Nott ingham.

Alexander Kasprzyk is a Reader in Pure
Mathematics at the Universi ty of Warwick.

Mathematical subjects
Algebra and Number Theory, Discrete
Mathematics and Foundat ions, Geometry
and Topology

License
Creat ive Commons BY-SA 4.0

DOI
10.14760/SNAP-2025-008-EN

Snapshots of modern mathematics from Oberwolfach provide exciting insights into
current mathematical research. They are written by participants in the scientific
program of the Mathematisches Forschungsinstitut Oberwolfach (MFO). The
snapshot project is designed to promote the understanding and appreciation of
modern mathematics and mathematical research in the interested public worldwide.
All snapshots are published in cooperation with the IMAGINARY platform and
can be found on www.imaginary.org/snapshots and on www.mfo.de/snapshots.

ISSN 2626-1995

Junior Edi tor
Manuel Staiger
junior- edi tors@mfo.de

Senior Edi tor
Anja Randecker
senior- edi tor@mfo.de

Mathematisches Forschungsinst i tut
Oberwolfach gGmbH
Schwarzwaldstr. 9 –11
77709 Oberwolfach
Germany

Director
Gerhard Huisken

https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.14760/SNAP-2025-008-EN
https://www.imaginary.org/snapshots
https://www.mfo.de/snapshots
mailto:junior-editors@mfo.de
mailto:senior-editor@mfo.de

	Is there a smooth lattice polytope which does not have the integer decomposition property?
	Introduction
	Proof of Pick's Theorem
	The base case
	The inductive step

	Oda's Oberwolfach question
	The integer decomposition property
	The smooth case



