CC BY-SA-4.0

You are free to:

Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material
for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:

Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.

More information (license deed): https://creativecommons.org/licenses/by-sa/4.0/

Limits of graph sequences

Graphs are simple mathematical structures used to model a wide variety of real-life objects. With the rise of computers, the size of the graphs used for these models has grown enormously. The need to efficiently represent and study properties of extremely large graphs led to the development of the theory of graph limits.

On Logic, Choices and Games

Can we always mathematically formalise our taste and preferences? We discuss how this has been done historically in the field of game theory, and how recent ideas from logic and computer science have brought an interesting twist to this beautiful theory.

Nonlinear Acoustics

Nonlinear acoustics has been a topic of research for more than 250 years. Driven by a wide range and a large number of highly relevant industrial and medical applications, this area has expanded enormously in the last few decades. Here, we would like to give a glimpse of the mathematical modeling techniques that are commonly employed to tackle problems in this area of research, with a selection of references for the interested reader to further their knowledge into this mathematically interesting field.

Random permutations

100 people leave their hats at the door at a party and pick up a completely random hat when they leave. How likely is it that at least one of them will get back their own hat? If the hats carry name tags, how difficult is it to arrange for all hats to be re- turned to their owner? These classical questions of probability theory can be answered relatively easily. But if a geometric component is added, answering the same questions immediately becomes very hard, and little is known about them.

Counting self-avoiding walks on the hexagonal lattice

In how many ways can you go for a walk along a lattice grid in such a way that you never meet your own trail? In this snapshot, we describe some combinatorial and statistical aspects of these so-called self-avoiding walks. In particular, we discuss a recent result concerning the number of self-avoiding walks on the hexagonal (“honeycomb”) lattice. In the last part, we briefly hint at the connection to the geometry of long random self-avoiding walks.

Algebra, matrices, and computers

What part does algebra play in representing the real world abstractly? How can algebra be used to solve hard mathematical problems with the aid of modern computing technology? We provide answers to these questions that rely on the theory of matrix groups and new methods for handling matrix groups in a computer.

Diophantine equations and why they are hard

Diophantine equations are polynomial equations whose solutions are required to be integer numbers. They have captured the attention of mathematicians during millennia and are at the center of much of contemporary research. Some Diophantine equations are easy, while some others are truly difficult. After some time spent with these equations, it might seem that no matter what powerful methods we learn or develop, there will always be a Diophantine equation immune to them, which requires a new trick, a better idea, or a refined technique. In this snapshot, we explain why.

Páginas