CC BY-SA-4.0

You are free to:

Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material
for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:

Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.

More information (license deed): https://creativecommons.org/licenses/by-sa/4.0/

Describing distance: from the plane to spectral triples

Geometry draws its power from the abstract structures that govern the shapes found in the real world. These abstractions often provide deeper insights into the underlying mathematical objects. In this snapshot, we give a glimpse into how certain “curved spaces” called manifolds can be better understood by looking at the (complex) differentiable functions they admit.

Reflections on hyperbolic space

In school, we learn that the interior angles of any triangle sum up to π. However, there exist spaces different from the usual Euclidean space in which this is not true. One of these spaces is the “hyperbolic space”, which has another geometry than the classical Euclidean geometry. In this snapshot, we consider the geometry of hyperbolic polytopes, for example polygons, how they tile hyperbolic space, and how reflections along the faces of polytopes give rise to important mathematical structures. The classification of these structures is an open area of research.

On radial basis functions

Many sciences and other areas of research and applications from engineering to economics require the approximation of functions that depend on many variables. This can be for a variety of reasons. Sometimes we have a discrete set of data points and we want to find an approximating function that completes this data; another possibility is that precise functions are either not known or it would take too long to compute them explicitly.

Tropical geometry

What kind of strange spaces hide behind the enigmatic name of tropical geometry? In the tropics, just as in other geometries, one of the simplest objects is a line. Therefore, we begin our exploration by considering tropical lines. Afterwards, we take a look at tropical arithmetic and algebra, and describe how to define tropical curves using tropical polynomials.

Wie steuert man einen Kran?

Die Steuerung einer Last an einem Kran ist ein technisch und mathematisch schwieriges Problem, da die Bewegung der Last nur indirekt beeinflusst werden kann. Anhand  eines Masse-Feder-Systems illustrieren wir diese Schwierigkeiten und zeigen wie man mit einem zum konventionellen Lösungsweg alternativen Optimierungsansatz die auftretenden Komplikationen teilweise umgehen kann.

A tale of three curves

In this snapshot, we give a survey of some problems in the study of rational points on higher genus curves, discussing questions ranging from the era of the ancient Greeks to a few posed by mathematicians of the 20th century. To answer these questions, we describe a selection of techniques in modern number theory that can be used to determine the set of rational points on a curve.

What is Pattern?

Pattern is ubiquitous and seems totally familiar. Yet if we ask what it is, we find a bewildering collection of answers. Here we suggest that there is a common thread, and it revolves around dynamics.

Biological Shape Analysis with Geometric Statistics and Learning

The advances in biomedical imaging techniques have enabled us to access the 3D shapes of a variety of structures: organs, cells, proteins. Since biological shapes are related to physiological functions, shape data may hold the key to unlocking outstanding mysteries in biomedicine. This snapshot introduces the mathematical framework of geometric statistics and learning and its applications to biomedicine.

Solving inverse problems with Bayes’ theorem

The goal of inverse problems is to find an unknown parameter based on noisy data. Such problems appear in a wide range of applications including geophysics, medicine, and chemistry. One method of solving them is known as the Bayesian approach. In this approach, the unknown parameter is modelled as a random variable to reflect its uncertain value. Bayes’ theorem is applied to update our knowledge given new information from noisy data.

Páginas