Square and triangular mirror rooms
Submitted by Emmanuelle Féau... on
Removable mirror rooms enabling to visualize infinite plane tesselations
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material
for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
More information (license deed): https://creativecommons.org/licenses/by-sa/4.0/
Submitted by Emmanuelle Féau... on
Removable mirror rooms enabling to visualize infinite plane tesselations
Submitted by IMAGINARY on
We provide a brief introduction to some basic ideas of Molecular Quantum Dynamics. We discuss the scope, strengths and main applications of this field of science. Finally, we also mention open problems of current interest in this exciting subject.
Submitted by IMAGINARY on
Krebs ist eine der größten Herausforderungen der modernen Medizin. Der WHO zufolge starben 2012 weltweit 8,2 Millionen Menschen an Krebs. Bis heute sind dessen molekulare Mechanismen nur in Teilen verstanden, was eine erfolgreiche Behandlung erschwert. Mathematische Modellierung und Computersimulationen können helfen, die Mechanismen des Tumorwachstums besser zu verstehen. Sie eröffnen somit neue Chancen für zukünftige Behandlungsmethoden.
Submitted by IMAGINARY on
Many problems in mathematics have remained unsolved because of missing links between mathematical disciplines, such as algebra, geometry, analysis, or number theory. Here we introduce a recently discovered result concerning quadratic polynomials, which uses a bridge between algebra and analysis. We study the iterations of quadratic polynomials, obtained by computing the value of a polynomial for a given number and feeding the outcome into the exact same polynomial again. These iterations of polynomials have interesting applications, such as in fractal theory.
Submitted by IMAGINARY on
Fluid mechanics is the theory of how liquids and gases move around. For the most part, the basic physics are well understood and the mathematical models look relatively simple. Despite this, fluids display a dazzling mystery to their motion. The random-looking, chaotic behavior of fluids is known as turbulence, and it lies far beyond our mathematical understanding, despite a century of intense research.
Submitted by IMAGINARY on
Profinite objects are mathematical constructions used to collect, in a uniform manner, facts about infinitely many finite objects. We shall review recent progress in the theory of profinite groups, due to Nikolov and Segal, and its implications for finite groups.
Submitted by IMAGINARY on
Computer simulations of many physical phenomena rely on approximations by models with a finite number of unknowns. The number of these parameters determines the computational effort needed for the simulation. On the other hand, a larger number of unknowns can improve the precision of the simulation. The adaptive finite element method (AFEM) is an algorithm for optimizing the choice of parameters so accurate simulation results can be obtained with as little computational effort as possible.
Submitted by Antonia Mey on
In this snapshot, we explore connections between the mathematical areas of counting and geometry by studying objects called simplicial complexes. We begin by exploring many familiar objects in our three dimensional world and then discuss the ways one may generalize these ideas into higher dimensions.
Submitted by IMAGINARY on
The Willmore problem studies which torus has the least amount of bending energy. We explain how to think of a torus as a donut-shaped surface and how the intuitive notion of bending has been studied by mathematics over time.
Submitted by IMAGINARY on
This snapshot introduces the notion of commensurability of polyhedra. At its bottom, this concept can be developed from constructions with paper, scissors, and glue. Starting with an elementary example, we formalize it subsequently. Finally, we discuss intrigu- ing connections with other fields of mathematics.