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To understand our world, we classify things. A fa-
mous example is the periodic table of elements, which
describes the properties of all known chemical ele-
ments and gives us a classification of the building
blocks we can use in physics, chemistry, and biology.
In mathematics, and algebraic geometry in particular,
there are many instances of similar “periodic tables”,
describing fundamental classification results. We will
go on a tour of some of these.

To get a grip on the complexity of the world around us and the objects – such
as animals, or chemical elements, or stars – appearing in it, we want to classify
these objects. This allows us to describe the relationships, similarities, and
differences between things we might be interested in.

An early, and somewhat cruel, effort to understand a class of living creatures
lead to lepidopterology: the study of butterflies and moths, most famously
performed by sticking needles through them and displaying them in nice wooden
cases, such as in Figure 1. It serves as a prime example of classification in
biology. Another important example is Darwin’s description and classification
of the beaks of the finches on the Galápagos islands, which led him to formulate
the theory of evolution.

In this snapshot, I want to introduce you to the idea that classification
is an essential aspect of mathematics, just like it is for biology (and other
sciences). The mathematical objects that we will discuss are truly as pretty as
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Figure 1: The work of a lepidopterist.

the butterflies from Figure 1. And whilst in some cases it takes a bit of training
as a mathematician to fully grasp their beauty, at least no living creatures need
to be harmed to study them.

In Section 1, we recall the periodic table of elements: an essential tool in
modern chemistry, and the result of a lengthy classification effort. Luckily for
us, the study of mathematical objects requires less interaction with dangerous
chemicals.

In Section 2, we introduce the idea of classifications in algebraic geometry.
These classification efforts are an ongoing process. When mathematicians
complete one classification, they will move on to the next and more challenging
one. That is why we will discuss “periodic tables in algebraic geometry”, going
from the 19th to the 21st century, and from completely known settings to
cutting-edge research, in Sections 3 to 6.

1 The per iodic table of elements

In every chemistry classroom, you find a large poster, listing the 118 known
chemical elements together with their properties. This is the famous periodic
table, and a very basic version is given in Figure 2.

The name periodic table refers to an experimentally observed periodicity
in the chemical behavior of elements: certain elements tend to exhibit similar
behavior. These observations are what chemists tried to formalise into a system.
In 1869, the Russian chemist Dmitri Mendeleev (1834–1907) catalogued the
then-known elements in terms of atomic mass, obtaining the periodic table we
now know.
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Figure 2: The periodic table of elements.

Originally there were gaps in the table: elements that were predicted to exist,
but which had not yet been discovered. The periodicity of the periodic table also
predicted some of the properties that these elements should have. For example,
Mendeleev predicted the existence of an element with atomic mass ±72.5, a high
melting point, and a gray color. This element was subsequently found in 1887,
and called germanium, in order to fill the gap which existed at position 32.

Invar iants of elements The periodic table in Figure 2 lists only the chemical
symbol and its atomic number. But usually a periodic table contains lots more
data, such as the atomic weight, the melting and boiling point, the electron
configuration, and so on. A beautiful interactive version can be found at
https://ptable.com.

These are all examples of invariants of the objects being classified: properties
of the chemical elements that do not change over time, and that do not depend
on who measures them. By measuring invariants we can identify which chemical
element we are looking at, and distinguish different elements. This is an
important idea in mathematics too: mathematicians love to study invariants of
objects, and then use them to distinguish between different objects.

Stars and the Her tzsprung–Russel l d iagram In the introduction, we also
mentioned that one can try to classify the stars in the sky. To better understand
an important aspect of classifications in mathematics it will help to discuss how
classifying stars is different from classifying chemical elements.

Astronomers observed that not all stars are equal: some are brighter than
others (even when accounting for their distance from Earth), and some are
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hotter than others. Back in the early 1910s, the Danish astronomer Ejnar
Hertzsprung (1873–1967) and the American astronomer Henry Norris Russell
(1877–1957) made a plot of those two properties of stars, and they noticed that
some types of stars are impossible. There are no super-bright cold stars, nor
are there very faint hot stars. And there are many stars like our Sun: they all
have roughly the same brightness and the same temperature. The interested
reader is invited to read up more on the Hertzsprung–Russell diagram.

The main takeaway is that it is possible to vary the parameters of a star,
subject to certain rules imposed by physics. This behaviour is not present in
the periodic table, but we will keep it in mind, as something similar will happen
in mathematics.

2 Classi f icat ions in algebraic geometry

We now turn to classifications in the area of mathematics known as algebraic
geometry. Algebraic geometry is the study of shapes described by polynomial
equations. The shapes we are interested in are smooth projective varieties,
defined over the complex numbers. Let us unpack what this means.

Smooth project ive var iet ies First of all, we work with the complex num-
bers C. Any complex number z ∈ C can be written in the form z = x + iy
where x and y are real numbers and i is a square root of −1. Working over
the complex numbers is necessary to make things tractable, but it also makes
it harder to make drawings. Usually we visualise the complex numbers as
the complex plane R2, with one real axis and one imaginary axis. But from
the point-of-view of an algebraic geometer, the complex numbers are really
a one-dimensional object! More concretely, Figure 4a is what an algebraic
geometer would draw when drawing a curve, whilst Figure 5b is what a complex
geometer would draw, but they really are manifestations of the same object.

Now, what does it mean to describe a shape using polynomials? A polynomial
f ∈ C[x] over the complex numbers is an expression

f(x) = adxd + ad−1xd−1 + · · · + a1x + a0

where the coefficients a0, . . . , ad are complex numbers. If d is the highest power
appearing with a non-zero coefficient, we say that the polynomial f has degree d.
We can substitute the variable x in the polynomial for any complex number
and calculate the value of the expression. If f(α) = 0, we call α a zero of f .
Now we define the variety V(f) associated to f to be the set of all zeroes of f .
We can express this definition formally by

V(f) = {α ∈ C | f(α) = 0}.
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Figure 3: The zero set of the polynomial f(x, y) = (x − 1)(y − 2).

Unless the polynomial is just f(x) = 0 and hence equal to 0 for any x, the
set V(f) consists of at most d points by the Fundamental Theorem of Algebra.
In particular, V(f) is a set with finitely many elements. As an example,
for a quadratic polynomial f(x) = ax2 + bx + c, the associated variety is
V(f) = { −b+

√
b2−4ac

2a , −b−
√

b2−4ac
2a }.

In general, we consider polynomials not only in one variable x but in n
variables x1, . . . , xn. We write f ∈ C[x1, . . . , xn] and define again the associated
variety to be the set of zeroes of f . This reads as

V(f) = {(α1, . . . , αn) ∈ Cn | f(α1, . . . , αn) = 0}.

This is usually no longer a finite set, giving rise to much more interesting
geometric objects! As an example, we can look at the polynomial f(x, y) = xy.
The associated variety V(f) consists of all pairs of points (x, y) where x = 0
or y = 0. For a different example, see Figure 3.

Even more generally, we consider not only one but several polynomials and
their zeroes at once, that is, the associated variety is the set of points that are
zeroes of each of the polynomials simultaneously. We call Cn the affine space
and these zero sets are called affine varieties.

In the affine plane C2, though, we have an annoying phenomenon: We would
like to say that two distinct lines intersect in precisely one point. However, this
is only true if the two lines are not parallel and we have to always mention this
exception of parallel lines to make a correct statement. That is why we replace
our affine geometry by something called projective geometry: In the projective
space, we consider additional points “at infinity” and we say that two parallel
lines intersect in such a point at infinity, so any two distinct lines now always
intersect without exception. Hence, instead of affine varieties, we will consider
projective varieties. This also means that we have to change the polynomials
that we consider a bit but we will sweep that under the rug.

5



(a) Real points of the cubic curve
y2 = x3 − 2x.

(b) Real points of the singular cubic curve
y2 = x3.

Figure 4: A smooth versus a singular cubic curve.

The final ingredient in order to describe the objects we are interested in is
smoothness. This is best explained through an example: consider the following
polynomials of degree 3

f = −y2 + x3 − 2x

g = −y2 + x3 + x2

which describe affine curves in C2. If we draw these curves inside R2 ⊂ C2, we
get the pictures as in Figure 4. We immediately see that on the right, there is
something funny happening at the origin: there is a singularity. We call a curve
smooth if it does not have a singularity. For more on singularities, we refer to
another snapshot [1].

Classi fy ing smooth project ive var iet ies? In what follows next, we discuss
examples of classifications of smooth projective varieties. This will illustrate
how the life of an algebraic geometer can be very similar to that of someone
sticking needles through unsuspecting butterflies, or that of an experimental
chemist inhaling noxious fumes in order to isolate an unknown chemical element.

Before we embark on our journey, we need to point out that to an algebraic
geometer classification can mean different things. Certainly, we are not just
classifying polynomials, rather we are interested in classifying varieties inde-
pendently of their realisation. For example, the polynomials f(x, y) = x2y
and g(x, y) = xy2 are different but the associated affine varieties are the same,
namely the set of all pairs of points (x, y) where x = 0 or y = 0. This gives
rise to the classification we will mostly be talking about: that of varieties up to
isomorphism, that is, up to their realisation inside some projective space.

For one-dimensional objects, or curves, we can come up with a reasonably
complete classification, see Section 3. But it turns out that already for two-
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(a) A curve of genus 0. (b) A curve of genus 1. (c) A curve of genus 3.

Figure 5: Complex algebraic curves as Riemann surfaces.

dimensional varieties, the full classification is an impossible task, so we restrict
ourselves to classifying certain well-chosen objects. There is an entire branch of
algebraic geometry, called birational geometry, devoted to understanding the
precise relationships between smooth projective varieties which are different but
nevertheless almost the same; but we will not discuss this further.

3 Curves: Riemann

The first classification we look at is of the simplest objects we can try to classify:
curves, or one-dimensional varieties.

We have already seen an important recipe and some examples to describe
curves: take a polynomial f ∈ C[x, y], consider its projective version, and
determine the associated variety V(f) (see for example Figure 4).

Can we describe all curves using the projective version of a single polynomial
in two variables? In other words, is every curve a plane curve? It turns out that
the answer is no. But we can show that every curve is a space curve: it can be
described by the projective version of several polynomials in three variables, so
that it is a curve in a three-dimensional space.

But does this help in the classification of curves? Recall that we don’t want
to classify polynomials, because those are only the tools to describe the curves.
So we need to talk about things which are intrinsic to the geometry of a curve,
independent of the realisation.

A discrete invar iant For this, we can look at an algebraic curve as a so-called
Riemann surface: We mentioned already that an algebraic geometer thinks
of a curve as a one-dimensional object over the complex numbers whereas a
topologist uses the description of the complex numbers C as the plane R2.
Hence for them, a curve is a two-dimensional object over the real numbers R.
This is also how they were originally studied by Riemann in the 1850s. We end
up with drawings as in Figure 5. These drawings correspond to plane curves of
degree 2, 3 and 4 respectively. The obvious difference between these pictures is
“the number of holes”. Mathematicians refer to this number as the genus.

It is similar to what a biologist would use to distinguish a giraffe from a fish:
the former has four legs, the latter has none. Therefore they must be different
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Figure 6: Earth is positively curved: Greenland seems to have the same size as
Africa in the Mercator projection, but in reality is 15 times smaller.

in a meaningful sense, and the biologist will say they belong to different species
(even though they are both animals).

So for now the “periodic table” of the classification of curves looks pretty
bland: it is just the sequence of integers 0, 1, 2, . . . But biologists don’t stop
classifying animals after having counted their legs, and neither will we after
counting holes.

On a Riemann surface, we can additionally study the curvature. It measures
how straight lines on the surface have to bend. We can distinguish the cases
where the curvature is positive, where it is 0, and where it is negative. The case
of a sphere (as in Figure 5a) has positive curvature. We are in fact familiar with
an important consequence of this! If we think of the sphere that is our world,
we know that any projection (such as the Mercator projection in Figure 6) will
distort reality: it is impossible to make a flat map of the entire planet, because
Earth has (positive) curvature.

The surface from Figure 5b has zero curvature (we say it is flat), and in all
other cases (such as in Figure 5c), the surfaces have negative curvature. Thus,
there is an additional trichotomy into g = 0, g = 1 and g ≥ 2.

Cont inuous parametr isat ions But this is still not the end of the classification
of algebraic curves. We have described a Riemann surface of genus 1 using
the projective version of a polynomial of degree 3. What happens if we start
varying the coefficients of this polynomial? For example, what if instead of the
equation y2 = x3 − 2x from Figure 4a, we consider y2 = x3 − 3x + 1? We can
show that they define “the same” curve: they are isomorphic.

But what if we consider y2 = x3 − 2x + 1 instead of y2 = x3 − 2x? Then
we can actually show that the curves are different, even though the genus is 1
in both cases. For this we’d have to use something called the j-invariant: a
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number attached to every genus 1 curve. In the case of y2 = x3 − 2x, it is equal
to 1728, in the case of y2 = x3 − 2x + 1, it is 11059.2 (in case you wonder: the
j-invariant is not a count of anything, in general it can be any complex number).
Thus to a trained algebraic geometer, these are in fact different curves. Hence
we can use parameters in our equations and get truly distinct answers. In our
example, we changed the constant term from 0 to 1, and we could in fact have
considered all intermediate values (including complex numbers) to get all kinds
of non-isomorphic curves of genus 1. They are usually referred to as elliptic
curves, and they are an important tool in modern cryptography.

This continuous behavior is not something that happens in the periodic
table of elements: you can’t move from hydrogen to helium by adding tiny
fractions of neutrons, electrons and protons. The closest analogy in science
is the Hertzsprung–Russell diagram, where you can vary the luminosity and
temperature of a star continuously.

What about other degrees? Here the trichotomy into g = 0, g = 1, and g ≥ 2
comes back into play. We can show that for g = 0, there are no parameters
possible (so there is a single curve of genus 0), whilst for g ≥ 2, there are in
fact 3g−3 parameters (so there are many curves of genus g, and describing them
all in a suitable sense is an interesting problem). This result for g ≥ 2 is what
Riemann obtained back in 1853, effectively introducing the notion of a moduli
space to mathematics: a parameter space to describe all curves of a given genus.

4 Smooth project ive surfaces: Enr iques

Going up one dimension, we end up with complex surfaces. They have been at
the forefront of algebraic geometry since the 19th century. The easiest algebraic
surfaces we can produce are by taking the projective version of a polynomial
in three variables, and considering the associated variety in three-dimensional
space. Because we are working over the complex numbers, this would require
a four-dimensional drawing, which goes beyond what we can do here. But in
Figure 7, we do what algebraic geometers often do: make a picture of an affine
piece over the real numbers. The platform IMAGINARY in fact offers software
to do this easily: https://www.imaginary.org/program/surfer.

The classification of smooth projective surfaces is due to the Italian math-
ematician Federigo Enriques (1871–1946), as his life’s work, posthumously
published in 1949. We necessarily have to gloss over many details, but we will
highlight some of its most interesting features. Without going into a detailed
explanation, we use that every surface can be reduced in a controlled way to
what is called a “minimal” surface. Moreover, we also know how to go back
from a minimal surface to our original one. Thus it suffices to classify these
minimal surfaces.
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(a) The Clebsch cubic surface. (b) A quartic K3 surface.

Figure 7: Two algebraic surfaces considered in R3.

Tr ichotomy Just like for curves, we have a notion of curvature for complex sur-
faces, introducing an important trichotomy between positive, flat, and negative.
With curves, we had that the positively curved case was the easiest, there being a
unique such curve. For surfaces, this is still the easiest case, but the uniqueness
no longer holds: there are now 10 families of what are called del Pezzo surfaces,
named after the mathematician who classified them in 1887. Some of these are
unique in their family, for others there are continuous parameters.

If we consider the projective version of a single polynomial in three variables,
the cases of degree d = 1, 2 and 3 give rise to del Pezzo surfaces. In Figure 7a, we
have given an impression of an important surface, where d = 3. The geometry of
these del Pezzo surfaces is already rich enough to fill entire books – even though
their classification is relatively straightforward – and their higher-dimensional
analogues will be important for what follows.

What about the flat case, the two-dimensional analogue of elliptic curves?
There are now two distinct families. The closest analogue of elliptic curves
are abelian surfaces. But there are also K3 surfaces, named so by the French
mathematician André Weil (1906–1998) in 1958 after the recently climbed
K2 mountain in the Himalayas, and the three mathematicians Kummer, Kähler,
and Kodaira, who had been building the tools to study algebraic geometry and
these surfaces in particular.

If we again consider the projective version of a single polynomial in three vari-
ables, the case d = 4 gives rise to a K3 surface; in Figure 7b we see an impression
of an example. As with del Pezzo surfaces, their geometry is rich enough to fill
entire volumes, and their higher-dimensional analogues will again be important
for what follows.
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Figure 8: The geography of algebraic surfaces.

The geography of surfaces: surfaces of general type We now come to
the analogue of curves of genus g ≥ 2. There are such curves for every value
of g, in fact there is an entire parameter space of them with 3g − 3 parameters,
describing their classification.

Unlike for curves, a single integer is no longer enough to describe the crude
classification of surfaces. Two important integers we can assign to a surface are
the Chern numbers c2

1 and c2. For the genus, we only had the inequality g ≥ 0
because we were counting something. For surfaces, the situation is more
complicated, and the possible values depend on the curvature. In Figure 8, we
have drawn the “allowed” values for small Chern numbers. These conditions
are similar to a law in biology saying that the number of legs on an animal
is always even (but starfish are obvious counterexamples, so this particular
universal biological law does not exist).

Now we have discussed necessary conditions on the Chern numbers. Are
these also sufficient conditions, that is, can we always find a surface with these
allowed numbers? This leads to the problem of understanding the geography
of surfaces, in particular those with negative curvature, which are called of
general type.

We can already fill in two positions in our “atlas” in Figure 8: abelian surfaces
have c2 = 0 and K3 surfaces have c2 = 24. Next, if we take a polynomial of
degree 5, we get a quintic surface, for which c2

1 = 5 and c2 = 55. There are
still many other allowed values in Figure 8, and it is an interesting challenge to
find a construction for a surface with given Chern numbers. We don’t know yet
whether every allowed pair corresponds to a surface, but we do know of many
interesting and beautiful examples.
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The important takeaway is that the classification of surfaces of general type
is still an open problem, and it has been giving mathematicians enough material
to work on for over a century.

5 Fano 3-folds: Mor i–Mukai

In our journey through smooth projective varieties, we now reach dimension 3.
From this point on, it is impossible to make good pictures (although algebraic
geometers do develop an intuition for these objects, and make drawings which
are hard, if not impossible, to interpret for outsiders).

For curves and surfaces, we saw that the trichotomy between positive, flat,
and negative curvature gave very different flavours to the classification problem.
This pattern continues in higher dimensions. The analogue of the g = 0 case for
curves (with positive curvature) and del Pezzo surfaces are called Fano varieties,
and in dimension 3 these are called Fano 3-folds. We will first talk about these,
as a full classification indeed exists. In dimension 2, we already saw that there
are 10 families of del Pezzo surfaces. So, what about dimension 3?

Again, there exists a full classification, due to the Japanese mathematicians
Shigefumi Mori and Shigeru Mukai in 1981 (with important preliminary work
by the Russian mathematician Vasilii Alekseevich Iskovskikh), building on the
results for which Mori eventually won the Fields medal in 1990, one of the
highest honors in mathematics. There are 105 families in the classification:
originally they listed 104, but back in 2003 they found a missing case.

The geometry of Fano 3-folds is truly a treasure trove of interesting algebraic
geometry, with lots of ongoing work which falls outside the scope of this snapshot.
Having a classification of the objects is after all not the end of the work, but
rather the beginning of the systematic study.

Calabi–Yau 3-folds We will now consider 3-dimensional varieties with flat
curvature: Calabi–Yau 3-folds. They are the analogues of the K3 surfaces and
abelian surfaces that we saw before. These objects have played a tremendously
important role in theoretical physics and string theory, and given their impor-
tance, mathematicians have been constructing more and more of them. Their
beautiful properties and ongoing classification would form an excellent subject
for yet another snapshot.

But frustratingly enough, we don’t know whether the final classification in
this case is a finite classification or not! To give a precise number of currently
known families of Calabi–Yau 3-folds is hard, because it requires a careful
comparison of all the different constructions. Let us just point out that one
important type of construction (using reflexive four-dimensional polytopes,
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of which there are a whopping 473 800 776) gives rise to 30 108 families of
Calabi–Yau 3-folds which are guaranteed to be different.

6 Hyperkähler var iet ies

One important theme that we have seen is that the higher we go in dimension,
the more restrictive we need our class of varieties to be in order to have any
hope of classification.

Amongst the varieties of flat curvature, there exists a decomposition into
building blocks, just like we can decompose molecules into atoms (for arbitrary
varieties there is nothing like such a decomposition). There are 3 types:

• abelian varieties of arbitrary dimension;
• Calabi–Yau varieties of dimension ≥ 3;
• hyperkähler varieties.

So the classification problem of varieties with flat curvature splits into three
different classification problems.

We already mentioned the classification of Calabi–Yau 3-folds, and in ar-
bitrary dimension, the situation is the same: we don’t know whether the
classification is finite, but we can construct many (really, many!) examples. On
the contrary, although they possess lots of interesting geometry, the classification
of abelian varieties is straightforward: in every dimension, there is a single
family.

That leaves us with hyperkähler varieties. These are necessarily even-
dimensional, and possess an extremely rich and beautiful geometry.

The first examples of dimension ≥ 4 were obtained by the French mathe-
matician Arnaud Beauville in 1983. Using K3 surfaces, he constructed a family
of hyperkähler varieties of dimension 2n. We call varieties of this type K3[n].
Similarly using abelian surfaces, he constructed another family of hyperkähler
varieties of dimension 2n. We call varieties of this type Kumn.

In 1999 and 2003, Kieran O’Grady constructed two new families of hyper-
kähler varieties. In one of the families, the varieties are six-dimensional; in the
other, they are 10-dimensional. We call the families OG6 and OG10, respectively.
Currently they look “exceptional”, in the sense that they are seemingly not part
of a construction that works in arbitrary dimension.

Is this then the end of the classification? Are all hyperkähler varieties of
type K3[n], Kumn, OG6 and OG10? We have absolutely no idea! Already in
dimension 4, we don’t know whether K3[2] and Kum2 are all the types we need.
There might be a type of hyperkähler variety that has been hiding from us, like
a beautiful butterfly deep within the rain forest. In other words, we are still far
from understanding the periodic table of hyperkähler varieties.
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Interact ive per iodic tables in algebraic geometry Do you want to see
some “periodic tables” in algebraic geometry in action? The author has created
various interactive interfaces for some of the classification results:

• https://mgnbar.info: the geometry of the moduli space of curves
• https://superficie.info: Enriques–Kodaira classification of surfaces

(joint with Johan Commelin)
• https://fanography.info: Mori–Mukai classification of Fano 3-folds
• https://hyperkaehler.info: classification of hyperkähler varieties
• https://grassmannian.info: generalised Grassmannians (not discussed)

It might be hard to really understand what is happening there, but hopefully it
is clear that mathematicians are truly interested in classifications.
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Figure 1 “Collection drawer with butterflies in Upper Silesian Museum in
Bytom, Poland”. Author: Marek Ślusarczyk. Licensed under Creative
Commons Attribution 3.0 Unported, visited on January 13, 2023.

Figure 2 “Periodic table of elements”. Original authors: Ryan Griffin and
Janosh Riebesell. Licensed under MIT License, modified by the author
from https://tikz.net/periodic-table, visited on January 13, 2023.

Figure 6 “Mercator projection”. Author: Miaow Miaow. Licensed under Cre-
ative Commons Attribution-Share Alike 3.0 Unported, visited on Jan-
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Figures 4, 5, 7 and 8 Created by the author using SageMath or TikZ.
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