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Geproci sets: a new perspect ive
in algebraic geometry
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Geproci sets arise from applying the perspective of
inverse scattering problems to algebraic geometry.
Analogous to the reconstruction of an object from
multiple X-ray images, we aim at a classification of
sets with certain algebraic properties under multiple
projections.

1 Algebraic geometry and transverse complete intersect ions

A fundamental goal of algebraic geometry is to understand solution sets of
systems of polynomial equations, that is, equations obtained by only taking sums,
differences, products, and positive-integer powers of variables and numbers. For
example, the points in the (x, y)-plane that are solutions to x2+y2−4 = 0 form a
curve (in fact, it is the circle of radius 2 shown in Figure 1). As another example,
there are exactly six points (x, y) that are solutions to both x2 + y2 − 4 = 0
and 2x3 − 4x − y = 0. We can see this in Figure 1 by graphing the solutions to
each equation and seeing where the resulting curves cross.

The highest exponent (or sum of exponents, if multiple variables are involved)
in any of the summands of a polynomial is called its degree. For example, the
polynomial x2+y2−4 has degree 2 and 2x3−4x−y has degree 3. The polynomial
x2y3+xy2+y2+x has degree 5 because the exponents in the first summand x2y3

add up to 5 and in the other summands, they add up only to 3, 2, and 1,
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Figure 1: A transverse complete intersection consisting of the six points where
the circle (which is a curve of degree 2) crosses a curve of degree 3.

respectively (the exponent of x = x1 counts as 1). The solution set of a
polynomial equation of degree n is called a curve of degree n, even though
it could, for example, also consist of n straight lines (this is the case if the
polynomial is the product of n factors of the form sx + ty − u).

An important theorem, known as Bézout’s Theorem, states that if f(x, y) is
a polynomial of degree a and g(x, y) is a polynomial of degree b, then the system
of equations f(x, y) = 0 and g(x, y) = 0 has either infinitely many solutions or
at most ab solutions. If the number of solutions is exactly ab, we call the set of
solutions a transverse complete intersection. The set of six intersection points
in Figure 1 is therefore an example of such a transverse complete intersection.

Note that transverse complete intersections are special finite sets: For ex-
ample, seven points that are not all on a straight line cannot be a transverse
complete intersection. Since 7 is prime, the only possibility for 7 = ab is for
a = 1 and b = 7. Thus, for seven points to be a transverse complete intersection,
g must have degree 7 and f must have degree 1. Thus, f(x, y) must be of the
form sx+ty−u for some numbers s, t (not both zero), and u, but sx+ty−u = 0
defines a line, so the seven points would all have to be on this line.

2 Inverse scatter ing problems

The study of inverse scattering problems, while typically rather remote from
pure mathematics, has been hugely important in science and technology. For
example, in Ernest Rutherford’s famous experiment, he measured the angles at
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Figure 2: Tomography applied to a sarcophagus as an example for an inverse
scattering problem.

which individual alpha particles were scattered after hitting a gold foil. From
this scattering pattern, he concluded that the positive charge in an atom must
be concentrated in a tiny nucleus rather than spread around the entire atom.
Rosalind Franklin’s famous experiments, in which she looked at the diffraction
pattern of X-rays directed at a DNA sample, led to the double helix model of
DNA. Tomography gives another example (see Figure 2); here, X-ray images
are taken of a three-dimensional object from various angles.

In all three examples, we try to work backward from the scattering data
(scattering angles of alpha particles, a diffraction image from a DNA sample, or
multiple X-ray images) and determine the internal three-dimensional structure
of the original object. In this sense, we try to invert the scattering process that
produced the data from the object, hence the term inverse scattering problems.

Reconstructions of a finite set of points in three-dimensional space from a
series of projections can also be very useful. This is essentially the basis for
depth perception in binocular vision. Radar images of the surface of the earth
from satellites can be converted to 3D images by reconstructing the position of
specific points in the landscape (such as mountaintops or points along a coast).

3 Inverse scatter ing problems in algebraic geometry

Given a finite system of polynomial equations (possibly involving more than
two variables), we usually cannot find the solution set exactly, so an important
aspect of algebraic geometry is to understand qualitative properties of the
solution set. For instance, Bézout’s Theorem is concerned only with how many
solutions there are. We could also ask what is the dimension of the set of
solutions (do they comprise a finite set, a curve, or a surface?). If they comprise
a surface, for example, we can ask about properties of the surface (is it a
sphere, donut-shaped, or something else?). More generally, we can ask which
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Figure 3: The six white dots give a (2, 3)-grid, which is also a (2, 3)-geproci set.
The projections (black dots) of the white dots onto the plane H form
a transverse complete intersection of the two solid and three dashed
lines in H (remember that n lines together form a curve of degree n).

surfaces can arise as solutions to systems of polynomial equations. This is an
example of a classification problem in algebraic geometry (for further reading
on classification problems, see Snapshot 2/2023 [8]).

The recent work [1] applies the inverse scattering perspective to classification
problems in algebraic geometry for the first time. Instead of trying to classify
finite point sets with a certain property, the idea of [1] is to try to classify finite
point sets in three-dimensional space whose projection from almost any point
to almost any plane has the property of interest. This approach is analogous to
asking what we know about an object if all of its X-ray-images (as in Figure 2)
have a certain property.

Let us first define what we mean by projection: For any plane H and any
point P not in H, the projection of a point p (other than P ) from P to H is
where the line L(P, p) through P and p intersects H. The projection of a set S
from P to H is obtained by projecting every point of S to H. Intuitively, the
projection is the shadow that S casts on H when you place a light source at P .

Depending on P , S, and H, it is possible that the line L(P, p) does not
intersect H (it might be parallel to H) or that multiple points of S have the
same projection to H. These cases are exceptional because they only occur if P
lies in some very specific positions with regard to S and H. Whenever we speak
of general points, we mean “most points”, but exclude such cases.

The main focus of [1] is to consider finite sets S of points in three-dimensional
space whose projections from all general points P are transverse complete
intersections in H. Such a set is called an (a, b)-geproci set if its general
projection is a transverse complete intersection of curves of degrees a and b.
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Figure 4: Two views of the same hyperboloid, x2 + y2 − z2 − 1 = 0, showing
how it consists of two families (called rulings) of skew lines.
Any line from one ruling intersects almost any line from the other
ruling in exactly one point on the surface.

Easy examples of geproci sets S are obtained by taking a transverse complete
intersection S contained in a plane H ′. Its projection from a general point to
any other plane H will also be a transverse complete intersection in H. The
interesting question is, what geproci sets can there be that are not contained in
any plane? This question was first raised in 2011 [6] by Francesco Polizzi, and
again in 2018 [3].

Until 2018, the only known examples of geproci sets not contained in a plane
were those pointed out by Dimitri Panov [6], namely grids. Figure 3 shows an
example of a grid. In particular, it shows a (2, 3)-grid, consisting of the 2 · 3 = 6
points represented as white dots in the figure, with three points on each of the
two skew lines, L1 and L2. (Skew means L1 and L2 are not parallel but do not
meet.) To construct a (2, 3)-grid, we can choose any three different points on L1
and three different points on L2, and connect pairs of them by lines; these are
the lines L′

1, L′
2, and L′

3 in the figure.
The white dots in Figure 3 project from the general point P to the black dots

in the plane H, giving a transverse complete intersection in H. The lines L1
and L2 could in a similar way each have an arbitrary number b ≥ 2 of points,
which would give a (2, b)-grid.

It is also possible to have an (a, b)-grid with a > 2 skew lines L1, . . . , La,
but then you have to be more careful how you pick these lines and how you
pick the lines L′

1, . . . , L′
b. You want the lines L′

1, . . . , L′
b also to be skew, and

you want that each line Li meets every line L′
j at exactly one point. The

(a, b)-grid then consists of the ab points where each Li crosses each L′
j . Two sets

of lines, L1, . . . , La and L′
1, . . . , L′

b, that meet these conditions can be obtained
by picking a lines from one side and b lines from the other side of Figure 4.
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Figure 5: The D4 configuration of 12 points and its projection.
The center of the cube and the back top corner of the cube (white
points) are not shown in the left figure.

Until 2018, no nonplanar examples of geproci sets were known other than
grids. But at a math conference in Levico Terme in 2018, it was noticed,
based on the work of [4], that nonplanar non-grid examples exist, coming from
symmetrical sets of points known as root systems (see the appendix to [2]). The
simplest example is given by the D4 configuration of 12 points. The 12 points
consist of the eight vertices of a cube, the center of the cube, and the three
points of perspective of the cube. (These three points will be at infinity unless
one deforms the cube a bit.) This set of 12 points is (3, 4)-geproci since its
projection, as shown in Figure 5, is a transverse complete intersection of a curve
of degree 3 (shown in black) and a curve of degree 4 consisting of four lines
(the three solid gray lines in the right figure and the dashed gray line). These
four lines are the projections of the solid gray lines in the left figure together
with the diagonal of the cube (not shown in the figure) going through the front
bottom corner of the cube, the center of the cube, and the back top corner of
the cube.

It is less obvious where the black curve of degree 3 through the projections
of the 12 points comes from. The three black dashed lines in the left figure
project to the three black dashed lines in the right figure, and we can see that
the projections of the nine black points are a transverse complete intersection
of the three black dashed lines with the three gray solid lines in the right figure.
If the curve given by the gray lines has the equation f(x, y) = 0 and the curve
given by the black dashed lines has the equation g(x, y) = 0, then any curve of
the form s · f(x, y) + t · g(x, y) = 0, with some numbers s and t (not both zero),
has degree 3 and goes through the black points. For some values of s and t, it
also goes through the marked point, and it turns out, due to the symmetry of
the D4 configuration, that this curve goes through all 12 points. In fact, it is
the curve shown in black in the right figure.
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Other root systems also give examples, such as F4 [2] and H4 [7]. A non-root
system example was also found [5]. Understanding these examples led to one
of the main results of [1]: for each a, b with 4 ≤ a and a ≤ b, there exists a
nonplanar non-grid (a, b)-geproci set. One of the other main results of [1] is to
show, up to the choice of coordinates, that there is only one nonplanar, non-grid
(a, b)-geproci set with a ≤ 3 and a ≤ b, namely the D4 configuration.

Many questions remain. One of the biggest is whether every nonplanar
non-grid geproci set must have at least three points that are on a straight line.
All currently known examples do, but it is not known if being geproci forces
this to be the case.
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