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even integers in Four ier analysis
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We describe how simple observations related to vec-
tors of length 1 recently led to the proof of an im-
portant mathematical fact: the sharp Stein–Tomas
inequality from Fourier restriction theory, a pillar
of modern harmonic analysis with surprising applica-
tions to number theory and geometric measure theory.

1 Introduct ion

We use simple geometric objects from our everyday (mathematical) life in order
to give a complete proof of a recent mathematical breakthrough: the sharp
three-dimensional Stein–Tomas inequality. The latter links the geometric notion
of how curved a surface is to properties of the Fourier transform. It finds
applications in many different areas of mathematics, including number theory
and geometric measure theory, as we will illustrate in the last section.

2 Unit vectors

Most of this snapshot takes place on the two-dimensional sphere, that is, the
set of all vectors of length 1 in 3-dimensional space. We call a vector x of

1 GN and DOS are partially supported by FCT/Portugal through CAMGSD, IST-ID,
projects UIDB/04459/2020 and UIDP/04459/2020.
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length |x| = 1 a unit vector. In mathematical notation, the sphere can be
expressed as

S2 := {x ∈ R3 : |x| = 1}. (1)

The sphere S2 is a curved surface which is the stage for a number of interesting
phenomena.

Archimedes showed that the surface area of S2 equals 4π. To do so, he
inscribed S2 in a cylinder of the same radius and twice the height, and proved
that the orthogonal projection from the lateral face of the cylinder onto the
sphere is area-preserving; see Figure 1. This can of course be done with calculus,
but it is worth pointing out that Archimedes died (ca. 212 BC) roughly 1850
years before Newton, one of the founders of calculus, was born (1642).

h

Figure 1: Archimedes’ approach: The surface area of a spherical strip is the
same as the surface area of a strip on a cylinder with the same height.

Let us now prove two identities for unit vectors. If ω1, ω2, ω3 ∈ S2 are
three unit vectors whose sum is zero, then the squared lengths of their distinct
pairwise sums satisfy

|ω1 + ω2|2 + |ω2 + ω3|2 + |ω3 + ω1|2 = 3.

We can check this using the observation that ω1 +ω2 = −ω3, as in Figure 2 (left),
so |ω1 + ω2| = |ω3| = 1, and the same happens for the other two summands.

If ω1, ω2, ω3, ω4 ∈ S2 are four unit vectors which sum to zero, as in Figure 2
(right), the above argument does not apply, but it still holds that

|ω1 + ω2|2 + |ω2 + ω3|2 + |ω3 + ω1|2 = 4. (2)

To see why this is the case, note that ω1 + ω2 + ω3 = −ω4 is a unit vector, so

1 = |ω1 + ω2 + ω3|2 = 3 + 2(ω1 · ω2 + ω2 · ω3 + ω3 · ω1), (3)

where ωi · ωj denotes the usual inner product 2 between the unit vectors ωi

and ωj . Expanding |ωi + ωj |2 = |ωi|2 + 2ωi · ωj + |ωj |2 = 2 + 2ωi · ωj for
each i ̸= j, adding them up and using identity (3) yields (2).

2 For two vectors ω = (ωx, ωy , ωz) and ν = (νx, νy , νz), we have ω ·ν = ωxνx +ωyνy +ωzνz .
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Identity (2) is a cute observation which recently found a striking applica-
tion that relates to the 22-century old approach of Archimedes, and allowed
D. Foschi [1] to crack a famous open problem in an exciting research field of
contemporary mathematics called sharp restriction theory. 3 The proof that
Foschi found is deep but, perhaps surprisingly, simple enough that we can
present it here in detail.

ω1

ω3

ω2

ω1 + ω2 = −ω3
ω1

ω2

−ω1 − ω2

ω3

ω4

Figure 2: Examples of configurations of three (left) and four (right) unit vectors
on S2 which sum to zero.

3 Spher ical convolut ions

From unit vectors, we move to functions on the sphere S2. For simplicity,
we restrict attention to non-negative functions f : S2 → [0, ∞), that is, to
functions which assign to each unit vector a non-negative number. Given two
functions f, g : S2 → [0, ∞), we can consider their product fg, usually defined
via (fg)(ω) := f(ω)g(ω) for all unit vectors ω ∈ S2. A less obvious way to
“multiply” the functions f and g is via their convolution product, 4 denoted
fσ ∗ gσ, which defines a function from R3 to [0, ∞). Here, σ is the notation for
the surface measure on the sphere. We also define the Dirac delta 5 δ

(
·
)

which

3 Restriction theory is the study of cancellation induced by restricting the Fourier transform
to a curved surface. One of the aims of sharp restriction theory is to discover the optimal
constant in all sorts of restriction inequalities; see the articles [2, 4] for recent surveys.
4 Terry Tao’s blog [6] has a nice discussion of the computational aspects of convolution
measures which contains (5) as a special case.
5 The Dirac delta is a “generalized function” that equals 0 everywhere, except at those
points where its argument vanishes. It is defined as fulfilling the following property for every
function F : ∫

R3
F (x)δ(x − a) dx = F (a).

3



ω

ν

x = ω + ν

Figure 3: For each fixed x, the region of integration Γx is the set of pairs
(ω, ν) ∈ (S2)2 for which ω + ν = x.

ensures that integration does not take place over the whole product space (S2)2

but only over the one-dimensional subset

Γx := {(ω, ν) ∈ (S2)2 : ω + ν = x}, (4)

which of course depends on x; see Figure 3.
Then we can define the convolution product as

(fσ ∗ gσ)(x) :=
∫

(S2)2
f(ω)g(ν) δ

(
x − ω − ν

)
dσ(ω) dσ(ν). (5)

To compute the integral in (5), the following question becomes relevant: In
how many ways can a given x ∈ R3 be expressed as the sum of two unit vectors?
If the length of x is greater than 2, then x can never be the sum of two unit
vectors, and so (fσ ∗ gσ)(x) = 0 if |x| > 2. But what happens if |x| ≤ 2?

Arguably the simplest non-zero function on S2 is the constant function 1,
which assigns the value 1 to every unit vector. Specializing (5) to f = g = 1, it
follows from Archimedes’ approach that (1σ ∗ 1σ)(x) goes to infinity as x tends
to 0; more precisely:

|x|(1σ ∗ 1σ)(x) = 2π, for all |x| ≤ 2. (6)

To see this, start by noting that the function 1σ ∗ 1σ is radial, that is, constant
on spheres around the origin, so it suffices to multiply it by an arbitrary radial
function Φ: R3 → C and integrate. Given such a Φ: R3 → C, there exists a
function ϕ : R → C such that Φ(x) = ϕ(|x|) for all x ∈ R3. Using also the
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invariance of the surface measure σ under arbitrary rotations and working in
spherical coordinates,∫

R3
ϕ(|x|)(1σ ∗ 1σ)(x) dx =

∫
R3

ϕ(|x|)
∫

(S2)2
δ

(
x − ω − ν

)
dσ(ω) dσ(ν) dx

=
∫

(S2)2
ϕ(|ω + ν|) dσ(ω) dσ(ν)

=
∫
S2

∫ 2π

0

∫ π

0
ϕ(

√
2 + 2 cos φ) sin φ dφ dθ dσ(ν)

= 2π

∫
S2

∫ 2

0
ϕ(r)r dr dσ(ν)

=
∫

|x|≤2
ϕ(|x|)2π

|x|
dx,

where the change of variables r =
√

2 + 2 cos φ was used to pass to the fourth
line, and Archimedes’ approach helps us recognize that r2 dr dσ(ν) = dx. This
implies ∫

|x|≤2
ϕ(|x|)

(
(1σ ∗ 1σ)(x) − 2π

|x|

)
dx = 0, for all ϕ.

For ϕ(|x|) = (1σ ∗ 1σ)(x) − 2π
|x| , we obtain

∫
|x|≤2(ϕ(|x|))2 dx = 0, so ϕ(|x|) must

be 0 for every |x| ≤ 2 and identity (6) follows at once.
What happens if f and g are not constant?

4 A sharp inequal i ty for posi t ive funct ions

The map f 7→ fσ ∗ fσ takes non-negative square-integrable functions on S2 to
non-negative square-integrable functions on R3. A generalization of (6) is then
still true, even if f is not constant. Quantitatively, the inequality∫

R3
(fσ ∗ fσ)2(x) dx ≤ 2π

(∫
S2

f2(ω) dσ(ω)
)2

(7)

holds for every function f for which the right-hand integral is finite. If 2π is
replaced by any strictly smaller real number, then (7) no longer holds in general.
Inequality (7) is thus said to be sharp, and the constant 2π is optimal for (7).
The goal of this section is to confirm these assertions.

This is by far the most technical part of the snapshot, and the heavy
computations that follow in the rest of this section may be skipped on a first
reading.
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It follows from the definition in (5) with f = g that∫
R3

(fσ ∗ fσ)2(x) dx

=
∫
R3

∫
(S2)4

δ
(
x − ω1 − ω2

)
δ

(
x − ω3 − ω4

) 4∏
j=1

f(ωj) dσ(ωj) dx

=
∫

(S2)4
δ

(
ω1 + ω2 − ω3 − ω4

) 4∏
j=1

f(ωj) dσ(ωj). (8)

To go from the second to the third line, we switched the order of integration
and used an integral version of the following observation: if x = ω1 + ω2 and
x = ω3 + ω4, then ω1 + ω2 = ω3 + ω4.

Another simple but useful remark is that, given arbitrary real numbers A
and B, we always have (A − B)2 ≥ 0, which can be rewritten as

AB ≤ A2 + B2

2 , for all A, B ∈ R, (9)

with equality if and only if A = B. In turn, this implies∣∣∣∣ac + bd

2

∣∣∣∣ ≤
√

a2 + b2

2

√
c2 + d2

2 , for all a, b, c, d ∈ R. (10)

This can be proven by squaring both sides of (10), multiplying them out, and
applying (9) with A = ad and B = bc.

Specializing inequality (10) to (a, b, c, d) = (f(ω2), f(−ω2), f(ω4), f(−ω4)),
changing variables ω2 to −ω2 and ω4 to −ω4, and repeating this procedure
for ω1 and ω3 reveals that the term in (8) cannot decrease if f is replaced by a
more symmetric version f♯, defined as 6

f♯(ω) :=
√

f2(ω) + f2(−ω)
2 .

Thus we may further assume f to be antipodal, that is, f(−ω) = f(ω) for
all ω ∈ S2, and we can continue to estimate (8). For non-negative antipodal
functions f , we have∫

R3
(fσ ∗ fσ)2(x) dx =

∫
(S2)4

δ

( 4∑
j=1

ωj

) 4∏
j=1

f(ωj) dσ(ωj)

= 3
4

∫
(S2)4

|ω1 + ω2|2 δ

( 4∑
j=1

ωj

) 4∏
j=1

f(ωj) dσ(ωj),

6 Note that the squared integral of f equals that of f♯.
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where the passage between lines follows from identity (2). Indeed, the Dirac delta
ensures that integration takes place over the set of 4-tuples (ω1, ω2, ω3, ω4)∈(S2)4

which sum to zero. An application of the Cauchy-Schwarz inequality then yields∫
R3

(fσ ∗ fσ)2(x) dx

≤ 3
4

∫
(S2)4

|ω1 + ω2|2 δ

( 4∑
j=1

ωj

)
f2(ω1)f2(ω2)1(ω3)1(ω4)

4∏
j=1

dσ(ωj)

= 3
4

∫
(S2)2

|ω1 + ω2|2(1σ ∗ 1σ)(ω1 + ω2)f2(ω1)f2(ω2) dσ(ω1)dσ(ω2)

= 3π

2

∫
(S2)2

|ω1 + ω2|f2(ω1)f2(ω2) dσ(ω1)dσ(ω2),

where the latter two identities respectively follow from (5) and (6). For the
final step, we need some more advanced mathematics. We will now verify that
the quadratic form

Q(g) :=
∫

(S2)2
|ω + ν|g(ω)g(ν) dσ(ω) dσ(ν)

satisfies for any antipodal function g the following sharp inequality:

Q(g)(∫
S2 g(ω) dσ(ω)

)2 ≤ Q(1)(∫
S2 1(ω)dσ(ω)

)2 = 4
3 . (11)

Indeed, when we replace g = f2 and plug (11) into the previous computation,
we obtain (7). The most important part of (11) is the inequality step, since the
exact value 4/3 on the right-hand side follows from a routine computation which
we do not carry out here.

The idea 7 is to exploit the maximal symmetry of the function 1. Symmetry
is the property of an object to be left invariant by certain transformations:
the larger the number of transformations that leave an object invariant, the
more symmetric it is. For the case at hand, for a fixed ν̃ ∈ S2, we consider the
reflection πν̃ω := ω − 2(ω · ν̃)ν̃ (see Figure 4) and define

gν̃(ω) := 1
2 (g(ω) + g(πν̃ω)) .

7 Here we take a detour from Foschi’s original approach and present a different and more
elementary argument.
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ν̃

ω

πν̃ω

Figure 4: Reflection around the plane perpendicular to ν̃ through the origin.

Note that 1ν̃ = 1 for all ν̃ ∈ S2, and all functions g that satisfy gν̃ = g for
all ν̃ ∈ S2 are constant multiples of 1. Moreover, since∫

S2
g(πν̃ω) dσ(ω) =

∫
S2

g(ω) dσ(ω),

we can check that
∫
S2 g dσ =

∫
S2 gν̃ dσ. So if we verify

Q(g) ≤ Q(gν̃) (12)

for arbitrary ν̃, it will follow that the left-hand side of (11) must necessarily be
maximized by a function g that satisfies g = gν̃ for all ν̃. As this implies that
the maximizer is a multiple of 1, we have proven (11).

To prove (12), we compute that, for an arbitrary g, Q(gν̃) − Q(g) equals∫
(S2)2

|ω + ν|
(

1
4

(
g(ω) + g(πν̃ω)

)(
g(ν) + g(πν̃ν)

)
− g(ω)g(ν)

)
dσ(ω)dσ(ν)

=1
2

∫
(S2)2

|ω + ν|g(πν̃ω)g(ν) dσ(ω)dσ(ν) − 1
2

∫
(S2)2

|ω + ν|g(ω)g(ν) dσ(ω)dσ(ν)

=1
2

∫
(S2)2

(|πν̃ω + ν| − |ω + ν|) g(ω)g(ν) dσ(ω)dσ(ν), (13)

where we change the variable ω to πν̃ω in the first integral in the second line.
Now notice that |ω + ν| =

√
|ω + ν|2 =

√
2 + 2t for t = ω · ν. Since ω and ν

are unit vectors, |t| ≤ 1, and we may apply the generalized binomial theorem:

√
2
√

1 + t =
√

2
∞∑

n=0

( 1
2
n

)
tn, for |t| ≤ 1. (14)
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Here the important property of the generalized binomial coefficient
(1/2

n

)
is that( 1

2
n

)
:=

1
2 ( 1

2 − 1)( 1
2 − 2) . . . ( 1

2 − n + 1)
n! < 0 for n = 2, 4, 6, . . . (15)

Plugging (14) into (13), we obtain

Q(gν̃) − Q(g) =
√

2
2

∞∑
k=1

( 1
2

2k

)∫
(S2)2

(
(πν̃ω ·ν)2k −(ω ·ν)2k

)
g(ω)g(ν) dσ(ω)dσ(ν).

All summands corresponding to odd n vanished because of the antipodal property
g(−ν) = g(ν).

By rotating the coordinate axes, we can assume that ν̃ = (0, 0, 1). Write ω =
(ωx, ωy, ωz), so that πν̃ω = (ωx, ωy, −ωz), and similarly for ν. Then πν̃ω · ν =
ωxνx + ωyνy − ωzνz, and with the multinomial generalization of the binomial
theorem, we have

(πν̃ω · ν)2k − (ω · ν)2k =
∑

|α|=2k

((−1)αz − 1)
(

2k

α

)
ωανα. (16)

Here, we use the multi-index notation: the letter α denotes a triple (αx, αy, αz)
of non-negative integers, and |α| = αx + αy + αz; moreover,(

2k

α

)
:= (2k)!

αx!αy!αz! , ωα := ωαx
x ωαy

y ωαz
z , να := ναx

x ναy
y ναz

z .

Notice that (−1)αz − 1 = 0 if αz is even, otherwise it equals −2. We conclude

Q(gν̃)−Q(g) =
√

2
2

∞∑
k=1

( 1
2

2k

)
· (−2)

∑
|α|=2k

αz odd

(
2k

α

)∫
S2

ωαg(ω)dσ(ω)
∫
S2

ναg(ν) dσ(ν)

=
∞∑

k=1

∑
|α|=2k

αz odd

−
√

2
( 1

2
2k

)(
2k

α

) (∫
S2

ωαg(ω)dσ(ω)
)2

.

By (15), the right-hand side is a sum of non-negative numbers. Therefore
Q(gν̃) − Q(g) ≥ 0, which proves (12) as we wanted.

This concludes the verification of (7). The inequality is indeed sharp and
the constant 2π is optimal since the choice f = 1 turns every single step in the
proof into an equality.
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5 On the other side of the (Four ier) mirror

The Fourier transform of a function F : R3 → C is a function F̂ : R3 → C,
defined by

F̂ (ξ) :=
∫
R3

eix·ξF (x) dx. (17)

The Fourier transform has a number of nice properties that turn it into a
powerful tool to tackle problems in mathematical analysis and beyond. For
instance, the Fourier transform of a square-integrable function is still square-
integrable, and the corresponding integrals are a constant multiple of each
other: ∫

R3
|F̂ (ξ)|2 dξ = (2π)3

∫
R3

|F (x)|2 dx. (18)

For functions f : S2 → C like the ones we considered in Section 4, we define the
Fourier transform of the measure fσ at a given ξ ∈ R3 as

f̂σ(ξ) :=
∫
S2

eiω·ξf(ω) dσ(ω). (19)

The Fourier transform takes convolutions into products, as the following calcu-
lation reveals:

( ̂fσ ∗ gσ)(ξ) =
∫
R3

eix·ξ(fσ ∗ gσ)(x) dx

=
∫

(S2)2

(∫
R3

eix·ξ δ
(
x − ω − ν

)
dx

)
f(ω)g(ν) dσ(ω) dσ(ν)

=
∫

(S2)2
ei(ω+ν)·ξf(ω)g(ν) dσ(ω) dσ(ν)

= f̂σ(ξ)ĝσ(ξ).

Here, we used definition (17) of the Fourier transform and definition (5) of the
convolution product, switched the order of integration, and in the last step
appealed to definition (19).

The basic Fourier theory just developed already has interesting consequences
for the sharp inequality (7). Note that ̂fσ ∗ fσ = (f̂σ)2, and so by (18) the
left-hand side of (7) can be rewritten as

(2π)3
∫
R3

(fσ ∗ fσ)2(x) dx =
∫
R3

| ̂fσ ∗ fσ|2(ξ) dξ =
∫
R3

|f̂σ|4(ξ) dξ,

where the last identity follows from the first part of this snapshot’s title: 4 = 2×2.
The conclusion is that inequality (7) is equivalent to∫

R3
|f̂σ|4(ξ) dξ ≤ (2π)4

(∫
S2

f2(ω) dσ(ω)
)2

, (20)
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which is the sharp version of the celebrated Stein–Tomas inequality on S2. The
previous reasoning reveals that constant functions are the unique real-valued
maximizers, that is, non-zero functions which turn (20) into an equality.

6 Other dimensions

A version of the Stein–Tomas inequality exists on each d-dimensional sphere,

Sd := {x ∈ Rd+1 : |x| = 1},

see [5, 7]. However, the value of the corresponding optimal constant and the
nature of maximizers (if they exist at all) remain a mystery which is the subject
of ongoing mathematical research; see [4, §2].

7 Fur ther connect ions

The Stein–Tomas inequality (20) can be rewritten in adjoint form as∫
S2

|F̂ (ξ)|2 dσ(ξ) ≤ (2π)2
(∫

R3
|F (x)| 4

3 dx

) 3
2

. (21)

Then it becomes a statement about the possibility of restricting the Fourier
transform of a p-integrable function F : R3 → C to the unit sphere S2 ⊂ R3, at
least when p = 4/3. This is only possible because the sphere is curved, which
was perceived as a very surprising phenomenon when E. M. Stein first observed
it in the 1960s, later giving rise to a fertile ground for research in modern
harmonic analysis that goes by the name of Fourier restriction theory.

In turn, Fourier restriction theory has connections to many other central
problems in mathematics. For instance, Roth’s theorem in the primes (that
is, the statement that any set containing a positive proportion of the primes
contains a 3-term arithmetic progression) was proved in [3] by adapting the
Stein–Tomas argument to establish a restriction theorem for the primes. As a
second example, the so-called restriction conjecture in Rd implies that Kakeya
sets (that is, sets containing a unit line segment in every possible direction) have
full Hausdorff dimension equal to d; we refer to the Snapshot 6/2020 “Rotating
needles, vibrating strings, and Fourier summation” [8] for further information
on the Kakeya problem and its links to harmonic analysis, and bid farewell for
now.
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