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Algebras and quantum games

Vern I. Paulsen 1

Everyone loves a good game, but when the players
can access the counterintuitive world of quantum me-
chanics, watch out!

“God does not play dice with the universe” – Albert Einstein
“Not only does God play dice but. . . he sometimes throws them where they

cannot be seen.” – Stephen Hawking

1 Playing games with quantum assistance

When one performs a measurement of a quantum system, the outcome is random
and the probabilities to obtain the different outcomes turn out to have some very
counterintuitive properties. In this snapshot we will discuss some games where
using quantum mechanics to “randomly roll the dice” leads to much higher
probabilities of winning than our classical intuition tells us is possible. Classical
means here not quantum: anything that can be explained or understood without
the notions from quantum physics will be deemed classical.

We will also look at prover systems, which are games that are designed to
test if a solution to a problem has been found. Players can find strategies to
win these games with certainty using classical methods, if and only if a solution
to the related problem can be found. Prover systems can be used in situations
where there are so many equations and so many variables that it is impractical
to write down all the values of all the variables and check that they satisfy all
the equations. Instead, if players keep giving correct answers each time that
they play a round of a prover system game, then the “Referee” can feel fairly
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certain that the players have indeed solved the problem. Surprisingly, there are
many prover systems for which quantum-assisted players can design a strategy
that will always succeed, even when no actual solution exists! So players that
have access to quantum phenomena can fool a prover system.

The games that we will look at all involve three parties. There are two
players, who we will call Alice and Bob. Alice and Bob are not competing, but
instead they cooperate in an attempt to return correct answers to questions
posed by the third party, who we will call the Referee. The questions are called
the inputs and the answers are called the outputs of the game.

One property of these games is that whether or not the pair of answers given
by Alice and Bob is correct depends on the pair of questions Alice and Bob
received, and not just on the question each of them received individually. So
although Alice and Bob both know the rules, that is, they both know which
pairs of answers are right for a pair of questions, they must both give their
replies without knowing what question the other was asked. Formally, this
is what is meant by saying that they are non-communicating. It is easiest to
imagine that they are in separated soundproof rooms so that they cannot hear
what the Referee tells the other player or what the other player tells the Referee.
A schematic view of the situation can be seen in Figure 1. We will now look at a
famous example of one of these games – the CHSH game – to illustrate these ideas.

Alice Bob

Referee

Figure 1: General depiction of a quantum game with three parties: Alice, Bob
and the Referee. The variables a, b, x and y encode the information
exchanged between them.
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2 A pract ical example: the CHSH game

The name of the game introduced here will probably sound quite cryptic to the
reader; it is refering to the “CHSH inequality”, which, roughly speaking, can
be used to distinguish classical and quantum behaviors in a physical system.
This inequality was derived jointly by Clauser, Holt, Shimony, and Horne [2],
hence the name CHSH. The CHSH game was designed to illustrate that this
inequality could be used to experimentally show that “entanglement” – a peculiar
phenomena which we will touch upon later – is an actual phenomena and not a
mere artefact of the theory [3].

In this game, Alice and Bob are each given a number by the Referee that
can be either a 0 or a 1; we will denote this number by x for Alice and y for
Bob. Alice and Bob must also return binary numbers (0 or 1), which will be
denoted respectively by a and b. They will win the CHSH game if the sum of
their numbers a+ b is of the same parity as the product x y. That is, they win
if the quantity a+ b− x y yields an even number.

Suppose that Alice and Bob also know that the Referee will pick one of
the four possible input pairs (0, 0), (0, 1), (1, 0), (1, 1) randomly and with equal
probability of 1/4. A good strategy for Alice and Bob is to agree that no
matter what they receive they will always answer with a 0. We would then
have a+b = 0, which means that the game is won when x y = 0. Such values are
obtained with three different pairs of input values: (0, 0), (0, 1), and (1, 0). The
last pair (1, 1) gives x y = 1, in which case they lose. This strategy therefore
has a winning probability (or “value”) of 3/4.

This strategy is an example of a “deterministic” strategy. Deterministic
means that Alice and Bob have a rule (function) that determines their output
depending on the input they receive. Another deterministic strategy with the
same value would be where Alice and Bob agree to always return 1. For this
game it is straightforward to list all the possible deterministic strategies, that
is, the different pairs of functions, and to check that the strategies of always
returning 0 or of always returning 1 are the two strategies with the highest
probability of winning.

Next we want to introduce the idea of random strategies. With a random
strategy a player might give different outputs for the same input received in
two different rounds of the game. For example, a random strategy applied to
the CHSH game could lead Alice to send a = 0 after receiving x = 0 in the
first round, and a = 1 after receiving x = 0 again in the second round. Now
let us talk about a specific class of such random strategies for the CHSH game:
the classical shared random strategy. An example of such a strategy works as
follows: Alice and Bob have a collection of deterministic strategies and at each
round they choose one of them based on an additional shared random input.
For example, the Referee might roll a die and tell them both the number on the
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die when he gives them their inputs. It can be shown that the highest winning
probability of this strategy is still 3/4. Roughly speaking, this is because at each
round they are still selecting a deterministic strategy. Now suppose that instead
of a roll of the die, the external input is given by a pair of laser beams emitted
by the Referee’s device, one beam shining into each players’ room. Each player
designs two quantum experiments that can be performed with the laser beam
they receive, and each measurement has two possible outcomes which we can
label with a 0 and a 1. Such measurements can only be described by quantum
theory, which is a theory giving probabilistic predictions on the outcomes of
such experiments. Alice and Bob will perform one experiment or the other,
depending on the input they receive from the Referee. Once the experiment
is performed, they report their outcome back to the Referee. In this way, they
randomly generate two outputs for their given inputs.

We now need to define a very important notion from quantum physics which
we evoked earlier: entanglement. A quantum system can have the weird property
of being entangled with another one. When this happens, it is impossible to
completely describe this system without considering the other system it is
entangled with. Acting on one of the two entangled systems will immediately
affect the other system, even if they are separated by thousands of kilometers!
This is a purely quantum property without classical equivalent that has been
puzzling physicists since the birth of the quantum theory. Even Albert Einstein
himself was bothered by this effect, as this instantaneous action at a distance
seems to clash with his theory of relativity. Nowadays, entanglement is better
understood but it remains one of the key features that contributes to the
strangeness of quantum physics.

Coming back to the CHSH game, if the two laser beams are not entangled –
in other words, if we are playing the “classical game”, then the optimal winning
probability is still 3/4. But if the laser beams are entangled in just the right
way – that is, if we now play the quantum game – the winning probability
can be as large as about 85%: cos2(π/8) to be precise. Roughly speaking, this
happens because when the lasers are entangled the outcome of the experiment
performed on one laser influences the outcome of the experiment realised on the
other laser. It is no wonder that Einstein referred to entanglement as a “spooky
action at a distance”.

It is important to emphasize that the laser beams contain no information
about the questions that were asked by the Referee; that is, they do not vary
with the different inputs the Referee can send. The lasers are just constantly in
the same entangled state. This particular entangled state and the experiments
that Alice and Bob will perform are chosen to achieve this higher winning
probability for this particular game.
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In practice, a pair of laser beams sold by a manufacturer as entangled can be
tested by conducting an experiment that mimics the CHSH game. This is a way
to ensure that they really are entangled. One can design a set of experiments
and if the players consistently beat the highest classical probability of winning
when performing measurements on the beams, then this gives evidence that
they are indeed entangled. This is one way that the theory of these games can
be used in a practical manner.

3 Quantum probabi l i ty densi t ies and Connes’s embedding
problem

One natural question would be: what mathematics can help us explain the fea-
tures of the CHSH game? One way to answer this question is to invoke“quantum
correlations”. Suppose that we play a game very many times, then even-
tually, from observations we can estimate the probability that if Alice and
Bob receive the input pair (x, y) they will produce the output pair (a, b).
This is called a conditional probability density and this fraction is generally
denoted p(a, b|x, y). The set of all such densities that can be obtained from
classical shared random strategies, as described in Section 2, is called the set
of local conditional densities and is denoted Cloc. The set of all such densities
that can be obtained by quantum measurements on possibly entangled states is
called the set of quantum correlations, and is denoted Cq.

The fact that by using quantum experiments we can increase our probability
of winning the CHSH game is a proof that Cloc ( Cq. This means that Cloc
is a (strictly smaller) subset of Cq. However, there are actually three possible
mathematical models for describing the sets of quantum correlations. One is
the standard model, so we will still denote that set by Cq. The other two sets
of densities, obtained from more exotic models, will be denoted by Cqa and
Cqc. We still don’t know which of these sets Cq, Cqa or Cqc, if any, is exactly
the set of conditional densities that can be obtained from the quantum world.
Consequently there is some ambiguity in the literature about which of these
three sets is meant by the term “quantum correlation”.

Mathematicians working with algebras of operators became interested in this
question after it was shown that the two “exotic” models gave exactly the same
set of densities, namely Cqa = Cqc, if and only if a famous problem in the area
of operator algebras had a positive solution [9, 12]. This problem, “Connes’s
Embedding Problem”, was originally posed in 1967 by the Fields medallist
Alain Connes [5].

The first person to show that Cq and Cqa are different sets of densities was
William Slofstra [13]. He demonstrated it by using a prover system game for
solving systems of linear equations, which we will describe later on. His proof
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showed the difference between these sets for a large number of inputs. Later
the difference between Cq and Cqc was also shown to hold for small numbers of
inputs and outputs [6, 4], and currently there are only a few remaining cases of
input-output numbers for which the difference is unknown. Very recently the
paper [8] (still under review at the time of writing this snapshot) has shown that
Cqa and Cqc are different by using these types of games, providing a negative
answer to Connes Embedding Problem.

4 Mermin’s magic square and l inear constraint games

The type of prover-system game used by Slofstra originates in games built
around solving systems of linear equations over the binary field Z2 = {0, 1}.
Suppose that we are given a set of m linear equations in n variables over the
binary field Z2. We can write this in matrix form as Mx = c, where M is an
m× n matrix with entries from Z2 (that is, a table with m lines and n columns
of numbers equal to either 0 or 1), c is an n-tuple with entries also from Z2
and x is the vector of unknowns – the variables. We can create a game from such
a system as follows: The Referee sends Alice an integer i between 1 and m, rep-
resenting one of the equations, and sends Bob another integer j between 1 and n,
representing a variable. Alice replies with a binary n-tuple a = (a1, . . . , an) and
Bob replies with a single bit b, that is, an element of Z2. They win the game if
Alice’s n-tuple is a solution to the i-th equation and if aj = b, that is, if Bob
correctly predicted the j-th entry of Alice’s solution.

Given a conditional probability density p(a, b|x, y), we will say that it is a
perfect density for the game if p(a, b|x, y) = 0 whenever (a, b) is a losing pair
of outputs for the input pair (x, y). Thus, a perfect density never produces a
losing output pair. If it follows a perfect density, the game described above
turns out to be a prover system. That is, the game has a perfect deterministic
strategy if and only if the system of equations has an actual solution.

However, there are many linear systems for which this game has been shown
to have a perfect quantum density while there is no classical solution. That is,
by using entanglement, Alice and Bob can produce correct answers for every
round, even though there is no solution to the system of equations.

A famous example of this phenomena is “Mermin’s magic square game” [11].
This is a system of six equations with nine variables, which is best pictured by
arranging the variables in a square:

x1 x2 x3
x4 x5 x6
x7 x8 x9

.
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The equations are given by the requirement that the sum of each row should
yield an even number, while each column should have an odd sum. It turns
out that it is impossible to find a solution to these equations. 2 Nonetheless,
using entanglement, there is a perfect quantum strategy for this game so that
no matter what row or column Alice is given and no matter what variable Bob
is given, Alice and Bob will always give replies that will satisfy the rules.

Besides entanglement, one other key feature that allows these strange out-
comes is that our games are memoryless. That is, if at some round Alice assigns
the value 1 to a particular variable, then there is nothing that prevents her from
assigning the value 0 to the same variable at some later round.

Slofstra [13] showed that two sets of quantum correlations are different by
implicitly creating a linear system with about 200 equations in about 200
variables that had a perfect density in the set Cqa but not in Cq.

5 Algebras and games

Finally, we very briefly describe the work done in [1, 7, 10]. For each game of
a certain type, called “synchronous” games, we construct a new object that
encodes the rules of the game. For those familiar with the terminology, this
new object is called an “algebra”. An example of a familiar algebra is the set
of polynomials. These are objects we know how to perform on them various
operations: add, multiply, subtract, sometimes divide; we can compare their
degrees, and they have been studied extensively. In this case, we construct a
parallel for polynomials by replacing the coefficients, powers, variables, etc. with
elements from the games. And so we can investigate them using tools which
are quite developed. We are then able to translate questions about whether or
not the game possesses a perfect strategy of each of the four types, local, q,
qa, or qc, into questions about this new object built from the game. This has
allowed us to prove that some games have perfect strategies by showing that
this object built from the game has the right properties, without ever actually
constructing the density or entangled state.

Building this type of “dictionary” that translates problems about one type of
object, in this case games, into problems about a totally different type of object,
in this case algebras, has always been one of my favorite parts of mathematics.
The first time I encountered this powerful idea was when I learned how Galois
had solved the long-standing problem in Euclidean geometry, that asked if there
was a geometric construction for trisecting any angle, by building a “dictionary”
that turned it into a problem about finding roots of polynomials.

2 Can you see this? Hint: Use 0 and 1 for even and odd.
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In addition to solving Connes’s Embedding Problem, researchers now believe
that this new dictionary for going between games and algebras might be the
key to solving another problem in a third area of mathematics, called the
“hyperlinear groups problem”.
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