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In this snapshot of modern mathematics we describe
some of the most prevalent waves and patterns that
can arise in mathematical models and which are used
to describe a number of biological, chemical, physi-
cal, and social processes. We begin by focussing on
two types of patterns that do not change in time:
space-filling patterns and localized patterns. We then
discuss two types of waves that evolve predictably as
time goes on: spreading waves and rotating waves.
All our examples are motivated with real-world ap-
plications and we highlight some of the main lines of
research that mathematicians pursue to better under-
stand them.

1 Introduct ion

Imagine yourself sitting in your favourite coffee shop. Start by thinking about
what is on the walls. Is there wallpaper or an illustration with complex geometric
patterns on it? Maybe there is some artwork from a local artist that features
spots or wavy lines arranged repetitively. What about the floor? You might see
square or hexagonal tiles with colours that repeat themselves in a predictable
way. Think about the espresso machine with its plume of steam that rises
vertically at an almost constant speed. Think about stirring your coffee in its
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cup, creating a constant swirl that looks like a whirlpool swallowing your spoon.
What’s fascinating here is that even inside a coffee shop we can find many
illustrative examples of patterns and waves that arise naturally throughout the
physical sciences.

It is exactly the emergence of these patterns and waves in nature that has
perplexed mathematicians for centuries. In this snapshot, we will focus on two
kinds of patterns and two kinds of waves that continue to receive attention
from the mathematical community due to their ubiquity in nature. We will
begin by discussing space-filling patterns. These are repeated, geometric tilings
that spread all over a space. Think of the floor tiles in the example above.
In nature these patterns arise, for example, as a tiger’s stripes or a leopard’s
spots. However, not all patterns completely fill the space they are given. So
another type of pattern we will consider are those confined to a small region of
a given space - they are localized. Like a stain on an otherwise spotless white
shirt, localized patterns typically present themselves as small imperfections on
a featureless background. Think of a lush oasis in the middle of an otherwise
inhospitable desert.

As mentioned above, as well as static patterns in space, there are many
patterns, such as waves, that move or change in time. We will discuss two
kinds of waves: invading/receding waves and rotating waves. The former may
come in the form of a cold weather front that relentlessly advances bad weather
toward you. The latter rotate around some point in space, typically creating a
distinctive spiral pattern, as can be seen, for instance, in this video of hurricanes
filmed from above with their eye at the centre.

2 Space-Fi l l ing Patterns

The study of pattern formation in mathematics goes back at least to the
seminal work of Alan Turing in the 1950s. His paper “The chemical basis for
morphogenesis” provided a theoretical framework to describe the formation
of stripes, hexagons, spirals, and other patterns in nature [6]. The models
presented by Turing, referred to as “reaction-diffusion” equations, are typically
associated with chemical reactions, but can also be used to describe biological,
physical, geological, and even social processes. Such mathematical models are
just as relevant today as they were when Turing first proposed his theory and
they are continually being applied to describe more and more pattern-forming
phenomena in the applied sciences.

To illustrate the main ideas of his theory, let us think about a chemical
reaction between two or more substances taking place in a small dish or on
an animal’s skin, which we think of as a two-dimensional space with spatial
variables x and y so that every point in such a space is described by a pair (x, y).
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One might expect that these spatially-extended reactions mix in such a way that
the concentration of each chemical everywhere throughout space is approximately
the same. Turing showed that this need not be the case. Indeed, if the substances
spread throughout space at different rates, the concentrations of each substance
can be different in different regions of space. In particular, Turing showed that if
the substances only vary in one spatial dimension, for example only along the x-
direction, then the concentration of the substances at a point (x, y) only depends
on the variable x and can be approximately estimated using a function of type
cos(kx). Here k is a real number, referred to as the wave number, and it depends
on the physical and chemical properties of the substances in the experiment,
as well as on its physical set-up. Following similar mathematical analysis, we
find that when the substances vary in both of the two spatial dimensions, the
concentration of the substances at a point (x, y) in space depends on both x
and y and is approximately estimated by the values of a sum of functions of
type cos(k1x + k2y), where k2

1 + k2
2 always has the same value. Again, k1 and

k2 are real numbers which describe the spatial variation of the concentration
in the x- and y-directions respectively, and they are also referred to as wave
numbers. These resulting spatial patterns are now referred to as Turing patterns,
in honour of Alan Turing who first discovered them.

Figure 1: Contour plots of space-filling Turing patterns. Red values are high
and blue values are low. (a) Stripes vary in only one spatial dimension,
represented by the function cos(x). (b) Hexagons are the sum of
cosine functions cos(x) + cos((x +

√
3y)/2) + cos((x −

√
3y)/2). (c) A

Turing pattern with cos(x)+cos((x+
√

3y)/2)+cos(0.8896x−0.4567y),
differing from the hexagon pattern by only one cosine function with
randomly chosen wave numbers.

We are able to construct fascinating space-filling patterns using different
values of k1, k2 and adding together different cos(k1x+k2y) functions. In Figure 1
we present three such patterns: (a) stripes that vary in only one dimension,
(b) hexagons, and (c) a complicated pattern using only three different cosine
functions. As one can see from this figure, these patterns closely resemble
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the regular patterns that we see in nature, especially on the skin of animals.
However, despite the fact that Turing’s theory dates back to the 1950s, there is
still a lot of work that remains to be done in understanding these space-filling
Turing patterns. For example, how do we construct reaction-diffusion models
that can accurately reproduce a specific pattern observed in a physical system
or in nature? That is, why do certain patterns get selected over others? We
can also turn this question around and ask how we can manipulate the system
to produce specific patterns: imagine you are given a chemical reaction in a
petri dish and you could manipulate the system just so to create stripes, or
hexagons, or any other pattern you desire. Finally, all of Turing’s results are
achieved under the assumption that space is homogeneous, meaning there is
nothing special about one point over another. It is natural to ask what happens
when this isn’t the case. This is something we would like to consider if we were
trying to explain the emergence of vegetation patterns where the soil quality is
vastly different from one region to another.

3 Local ized Patterns

Let us start by imagining we are monitoring a population of some animal within
a very vast territory – for example, rabbits. If there are very few rabbits,
then without considering any external factors, we would expect the population
to go extinct since it would be hard to find a mate to reproduce at a fast
enough rate to continue on. On the other hand, if there are a lot of rabbits, we
expect the population to continue to grow until the surrounding environment
cannot support any more of them. Therefore, without changing anything in
this theoretical system, we have two possible outcomes, or states, depending
entirely on how many rabbits we start with. In many systems that exhibit
Turing patterns, we see something similar, that is, homogeneous/featureless
states are possible under the same conditions that lead to patterned states -
what determines which state is selected is how the system is set up initially. We
can think of such a situation as a competition between states.

Although Turing patterns have been studied for decades, it is only recently
that the mathematical community has noticed that, in competitive scenarios,
Turing patterns can be localized to a small region of a given space [4]. This
means that many models describing chemical, biological, physical, or even social
processes can support localized patterns that resemble a Turing pattern in a
bounded region of space, while remaining relatively homogeneous or featureless
outside that region. A well-documented example of this is that of crime
hotspots, representing regions in cities with high rates of criminal activity that
are highly localized to certain blocks and neighbourhoods. In nature we find
such localized patterns in patterns of vegetation (such as the oasis example
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from the introduction), chemical reactions, and ferrofluids which are magnetic
liquids that can hold a variety of patterns when exposed to a magnetic field
(see, for example, this video).

In Figure 2 we illustrate localized patterns that can be found as solutions to
mathematical equations. When the system is only able to vary in one spatial
dimension, the localized patterns have a rolling patch resembling a cosine
function in their centre, which eventually reduces to a featureless background
state as one moves away in either direction. In two or more spatial dimensions
localized patterns can be much more intricate, coming from the fact that Turing
patterns are significantly more complicated in higher dimensions. There are
many open problems related to localized patterns. First, it is still unknown
which patterns are possible in two and higher spatial dimensions, making this
an area of significant mathematical research. Second, a lot of research has been
dedicated to understanding the exact conditions that lead to this competition
in our mathematical models, so that we can recognize it in a variety of pattern-
forming systems. Third, localized patterns can only exist in systems where there
is competition between states, and so it is important to understand the response
to the change of the external settings of a system to see how these patterns react.
In some cases, changing parameters destroys the competition in the system.
The result is often that either the localized central patch expands outwards
forever, consuming the featureless pattern, or the localized patch collapses on
itself, eventually resulting in a completely featureless state. Knowing which
state wins out can have significant repercussions on the ability of the model
to form patterns in the real-world, since one can then design physical systems
that exhibit or inhibit patterns.

Figure 2: Localized patterns take the form of Turing patterns in a confined
region of space, while outside of this region they are featureless. (a)
In one spatial dimension localized patterns look like a sinusoidal
function in the middle and are constant away from the centre. In two
spatial dimensions localized patterns can take more intricate forms,
such as (b) hexagons or (c) elongated stripes.
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4 Spreading Waves

Let us now move on to processes that change with time in a regular way and
let us consider the example of an infectious disease spreading across the US
state of Virginia. In the north-east corner of Virginia is the Washington DC
metropolitan area, which is one of the largest population centres in North
America and an international hub, due to its political significance. One would
then expect that an infectious disease would start where the population density
is high, such as in the northeast, and slowly spread over the entire state from
there, as illustrated in Figure 3.

Infection Rate

high low

Figure 3: A theoretical infectious disease spreading from the Washington DC
metropolitan area over the whole of Virgina.

From a mathematical perspective, there are a number of questions that
arise from this situation. First, how can we model such disease spread? Let
us start with just the spatial domain. We could simply consider ourselves on
a two-dimensional domain that represents the whole of Virginia, or we could
simplify our model by dividing the state into distinct regions. This is known as
“coarse-graining” the domain. For example we could consider the congressional
district of Virginia to be points, or nodes, connected by edges only if they
share a border, as in Figure 4. After choosing how to model our domain, we
could then ask how fast the disease spreads in it. Numerous studies have
shown that there are small, but measurable, differences between the modeled
spread of the disease when we use a continuous spatial domain versus when we
coarse-grain the domain [5]. Knowing which model offers better predictions is
case-dependent, and typically requires comparisons with available historical data.
Hence, we see that there are both modelling and mathematical complexities
that can arise when attempting to understand naturally occurring patterns and
waves. There is no simple answer as to how to simulate such phenomena, and
so mathematicians research each possible model independently to compare the
outcomes and note their discrepancies.

Spreading waves can be observed in many places other than disease propa-
gation. We recall that in the previous section we said that when we perturb

6



Figure 4: We can use the congressional districts of Virginia to coarse-grain
the state of Virginia. The result is a set of nodes, representing the
different districts, and edges connecting them. Edges are only present
between nodes if they share a border.

models so as to destroy the competition between Turing and featureless states,
one state typically overtakes the other as time goes on. Current research is
investigating this on a theoretical level by initiating models with half of the
domain taken to be a Turing pattern and the other half taken to be a feature-
less state. One possibility is illustrated in Figure 5 where the Turing pattern
advances from left to right as time goes on, eventually replacing the featureless
state everywhere in space. Questions abound in relation to this kind of wave
propagation. Does one state advance into the other with constant speed? If the
speed is constant, what is it? What conditions are necessary in the model for
one state to overtake the other? How can we manipulate this invasion process to
slow down or even stall the advance? Recent work is trying to answer many of
these questions using phenomenological pattern-forming mathematical models
[1], but moving to more complicated and realistic models remains a challenge
due to the complexity of the methods involved. Finally, we can ask ourselves
how to mathematically predict how spreading waves interact with each other
when they collide. A real-world example of this can be observed in this video of
the Belousov–Zhabotinsky chemical reaction in a petri dish, where we can see
the spreading rings bounce off each other and attach to create more complex
patterns.

5 Rotat ing Waves

In the previous section we discussed waves that move outward linearly. Another
type of wave continually rotates around a fixed point in the domain. We
refer to these waves as rotating waves and they typically come in the form of
spirals, as illustrated in Figure 6. From a mathematical perspective, far less
is understood about spiral rotating waves than the other patterns and waves
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Figure 5: A striped Turing pattern propagating into and overtaking a featureless
state. As time goes on, the stripes advance to fill the domain from
left to right.

discussed here. Mathematicians have been able to show some ways in which they
arise as solutions to mathematical equations, however these studies are primarily
focussed on phenomenological models that are significantly simpler than those
that describe important chemical or biological processes. One such biological
process where these waves can be observed is on the surface of fertilized starfish
eggs, where they are produced by billions of activated proteins that tell the egg
to start dividing and begin the formation of the organism. See the press article
[2] for a non-technical overview of the work being done in this direction.

Figure 6: A spiral wave rotates with constant speed about its centre.

Many mathematical studies of spiral waves have been limited to a single
spiral which is rotating and fills the entire spatial domain. However, studies
employing phenomenological models have shown that if the domain has isolated
blemishes, such as dead or defective cells on the surface of biological tissue, then
the spiral will anchor itself on these blemishes [3]. What is far less understood is
how multiple spiral waves interact with each other. For example, the Belousov–
Zhabontinsky chemical reaction mentioned earlier is also known to support
spiral waves that rotate and sometimes wander over the domain. This chemical
reaction gives experimentalists a tabletop experiment that generates spiral
waves to study and manipulate to better inform the scientific community of
their behaviour in more complex processes, such as on the surface of fertilized
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eggs. One such experiment can be observed in this video where we see that
the spirals push ripples outwards in every direction, leading to collisions with
ripples generated by other spirals and eventually self-organizing into a complex
pattern that is being continually generated by the spirals near the centre. Spiral
waves have proven themselves to be significantly more difficult to study using
traditional mathematical tools, and so the community’s understanding of them
lags far behind that of spreading waves. One example of where we are still
catching up is to simply identify the systems spiral waves can be found in
and determining what exactly this means for the application of the associated
models.
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