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The advances in biomedical imaging techniques have
enabled us to access the 3D shapes of a variety of
structures: organs, cells, proteins. Since biological
shapes are related to physiological functions, shape
data may hold the key to unlocking outstanding mys-
teries in biomedicine. This snapshot introduces the
mathematical framework of geometric statistics and
learning and its applications to biomedicine.

1 Introduct ion

Statistics is the branch of mathematics that is concerned with the collection
and analysis of data, and thus it forms the foundations of machine learning
and deep learning algorithms 2 . Vast quantities of biological imaging data
are currently being generated by high-throughput imaging systems. In this
context, statistical learning is poised to play a major role in making sense
of the wealth of incoming information. Foundational mathematical research
defining the appropriate learning tools to study biological features, such as the
irregularly-shaped cancer cells shown in Figure 1, is therefore important and
timely.

1 Nina Miolane is partially supported by the NSF SCALE MoDL Grant 2134241.
2 To read more about machine learning, particularly in the context of medical imaging, see
Snapshot 15/2019 Deep Learning and Inverse Problems by S. Arridge et al.
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Figure 1: Cancer cells observed by fluorescence microscopy. Cancer cells typi-
cally exhibit an irregular boundary, in contrast to healthy cells. (See
Chapter 3 in the book [1], available here: https://www.ncbi.nlm.nih.
gov/books/NBK9553/.)

From a statistical perspective, shapes are fascinating data objects, as they
can be modelled as points in some curved space, potentially of many dimensions.
To do computations on shape data requires us to take account of the geometry
of these spaces, and to adapt our statistical tools accordingly. In this snapshot,
we introduce shape spaces and the geometry needed to study them, and the
associated field of “geometric statistics and learning” to showcase the potential of
this mathematics for advances in biomedical shape analysis and computational
medicine.

2 The Geometry of Shape Spaces

We will begin this section by considering a simple example of a shape space,
and then we will introduce some more general ideas.

2.1 Example: The Space of Tr iangle Shapes

Let us consider simple shapes: triangles in 2D. A triangle can be represented
as the 2D coordinates of three points. The triangle shape is everything that
remains once we have filtered out the triangle’s position, orientation and scale.
In other words, all similar triangles are considered to have the same shape.
Mathematically, the shape of a triangle is therefore what is called an “equivalence
class” under translation, rotation and scaling transformations. That is, we can
group together all similar triangles and choose one representative element to
work with.

The mathematician David Kendall formalized these ideas in the 1980s.
Interestingly, Kendall began studying shapes motivated by statistical questions
related to archeology such as the study of the shape of the Stonehenge monument
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[6]. Kendall showed that the space of triangles carries in a very natural way
the 2-dimensional structure of a sphere, shown in Figure 2. We observe that
the equator of this sphere corresponds to flat triangles (a triangle with all three
points aligned, effectively a line segment), and the first meridian to isoceles
triangles. Part of the intuition behind the appearance of the sphere here is that
all scaling has been removed, in the same way that if we consider vectors in the
plane and consider the length to be normalised to 1, we obtain a circle. 3

Figure 2: Visualization of the shape space for 2D triangles. Courtesy of Elodie
Maignant, Geomstats contributor and co-winner of the ICLR 2021
Challenge for Computational Geometry and Topology [4]. The trian-
gles are superimposed on the manifold to provide intuition on this
shape space.

2.2 Manifolds

One of the most fundamental notions in geometry, introduced by Bernhard
Riemann (1826–1866), is that of a manifold. The basic idea is that an n-
dimensional manifold is a space which near every point looks like the Euclidean
space Rn. Thus, in two dimensions, a manifold locally looks like the plane R2

in the vicinity of any of its points. The most intuitive example is that of the
sphere, for instance, the surface of the earth, as shown in Figure 3, on the right.

3 A 2-dimensional vector is a mathematical quantity with a magnitude and a direction.
Vectors can be pictured as arrows in the plane, where the direction is measured as the angle
anti-clockwise from the horizontal, and the magnitude is the length of the arrow. For more
details, see https://en.wikipedia.org/wiki/Euclidean_vector.
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To a person walking on the earth, the earth looks flat: locally, the earth looks
like a 2-dimensional plane. However, globally, the earth is curved.
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Figure 3: Left: Comparison of a vector space (a flat space) with a manifold
(a curved space). Right: A classical example of manifold, namely, a
sphere, such as the surface of the earth.

2.3 Comput ing on a Manifold

Like the triangle example that we have seen, it is generally the case that shape
data belong to a manifold. If we want to be able to do computations with
our shape data, that means we need to understand how to do computations
on a manifold. In any Euclidean space, we know how to measure the distance
between points (a function that measures distances is called a metric) and
how to measure angles. Riemann proposed a way of generalising these ideas
to manifolds, by introducing the concept that is now known as a Riemannian
metric. A Riemannian metric provides a manifold with notions of lengths
and angles, and starting from this we can investigate any aspect of geometry.
For instance, we can ask for the curve on the manifold between two points
of minimal length, called a geodesic, which is the generalization of a straight
line in a Euclidean space. On the sphere, the geodesics are the great circles.
Considering the embedding of the sphere in the 3D Euclidean space, these are
the circles that result from the intersection of the surface of the sphere with
any plane that passes through the centre.

3 Geometr ic Stat ist ics and Learning on (Biological) Shape
Spaces

Now that we have outlined the basic idea behind operations on a manifold,
we turn to performing statistical computations on them. The mathematical
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theory of (traditional) statistics is defined for data points that are numbers
or vectors, that is, data that belongs to a Euclidean space. What happens if
our data are shapes, and belong to a shape space that is a manifold, like the
sphere in Figure 2? We refer also to the left-hand side of Figure 3, which shows
examples of data points on a vector space and a manifold. We need a theory
of statistics that is, by construction, compatible with a manifold. This theory
is called “geometric statistics” and lies at intersection of two major fields of
mathematics: geometry and statistics. Let us now use the example of the mean
to obtain some intuition as to what must be changed in order to do statistical
computations on a curved space.

3.1 Example: The Mean

In traditional statistics, we know how to compute the mean x̄ from a set of
data points xi for i = 1, ..., n:

x̄ = 1
n

n∑
i=1

xi. (1)

We observe that the very definition of mean, formulated as a weighted sum of
the data elements, is itself linear. If we apply it on a (nonlinear) manifold, we
obtain an element x that does not necessarily belong to the manifold. Figure
4 (left) shows two points on the sphere, that can be thought of as 3D vectors
starting from the origin of Euclidean 3D space that contains the sphere.

Points
Fréchet mean

Points
Linear mean

Figure 4: Left: The traditional mean does not lie on the manifold. Right: The
Fréchet mean does belong to the manifold.
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Thus, the definition of the mean needs to be changed so that the so-obtained
mean value lies in our space. One way to achieve this is as follows:

x̄ = argminx

n∑
i=1

dist(xi, x)2, (2)

where “argmin” stands for “argument minimum”, and it refers to points x on
the manifold that may realize the minimum of the sum. This is the definition
of the Fréchet mean. The Fréchet mean of data on a manifold now provides,
by definition, an element of the manifold, see Figure 4 (right). The Fréchet
mean is an extension of the usual mean on a flat space, in the sense that it
is a well-known fact that the mean of a dataset has the property of being the
point that minimizes the sum of the squared distances to the data. Notably,
the Fréchet might not exist or not be unique. We invite the reader to think
about examples where this could happen, such as with data points located at
the poles of the sphere.

3.2 Beyond the Mean

Beyond the extension of the definition of the mean, many operations and
statistical learning methods can be extended to manifolds. Figure 5 illustrates,
for example, the generalization of the notion of “addition” of a vector (in black)
to a point (in blue) that gives another point (in orange). On the left, we see
the definition of addition on a vector space, while on the right, we see it for a
manifold. As a matter of fact, Riemannian geometry and geometric statistics
provide the theoretical and computational building blocks supporting the recent
trend of geometric (deep) learning [2]. Statistics and machine learning are two
branches of data analysis that go hand-in-hand. If we can generalize statistics
to manifolds, then we will be able to generalize a very wide range of machine
learning and deep learning methods to manifolds as well. There is much interest
in the machine learning and deep learning community for extending traditional
learning algorithms to data that belong to manifolds, such as the shape spaces
presented here.

4 Discussion and Conclusion

While machine learning and deep learning have been remarkably successful at
solving a massive set of problems on data types including images and texts,
it is only recently that they have started to be generalized to geometric data
such as the shapes presented in this snapshot, but also to point sets, graphs
and simplicial complexes [2, 5]. As novel methods are being published at an
increasing rate in this field, there is a need for mathematics and statistics that
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Figure 5: Left: Addition of the black vector to the blue point in the plane gives
the orange point. Subtraction of the orange point from the blue point
gives the black vector. Right: Generalization of these operations to
the surface of the sphere. Here the vector points along the direction
of the “tangent line” to the geodesic curve.

can ground new algorithms within a rigorous framework, in order to study their
theoretical properties. In this context, geometric statistics may hold the key to
analysing this literature from a mathematical perspective.

Just as benchmark datasets such as MNIST [3] supported the growth of
deep learning and comparison of methods, we suggest that a suite of geometric
benchmark datasets should be provided — covering the range of possible
geometric characteristics such as positive or negative curvature manifolds. This
would allow comparison of new geometric (deep) learning methods, not only in
terms of their statistical properties, but also in terms of the geometric regime
that optimizes their performance. Evaluating properties such as the uncertainty
of prediction algorithms will be even more critical in the context of biomedicine,
where the highest standards of reliability are necessary.
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Image credi ts

Figure 1 Image kindly provided by Ashok Prasad, Colorado State University.

The other illustrations were generated with the “Geomstats” software [7].
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