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Searching for the
Monster in the Trees

David A. Craven

The Monster finite simple group is almost unimagin-
ably large, with about 8 x 10° elements in it. Trying
to understand such an immense object requires both
theory and computer programs. In this snapshot,
we discuss finite groups, representations, and finally
Brauer trees, which offer some new understanding of
this vast and intricate structure.

Every statistic about the Monster sporadic simple group exudes vastness. It
is a mathematical object that consists of the following number of elements:

808017424794512875886459904961710757005754368000000000.

In the quest to study a set of that size, complex computer programs and
algebraic ideas have been harnessed over the past decades, and its structure
is slowly becoming clear. The path to this clarity is named “representation
theory”.

Mathematical objects can be defined purely abstractly. One may define the
real numbers as the unique “complete, totally ordered field”. Knowing what
those words mean doesn’t really help you work with the real numbers, but
giving a “representation” of them as something more concrete does.

In its broadest sense, a representation of a mathematical object is a way
of expressing it in a more approachable fashion. For example, one represents
a complex number as a pair (a,b) of real numbers, and then instead of z one
writes a + bi where i stands for a square root of —1. This representation
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of complex numbers allows us to add them together incredibly quickly, but
multiplication is slightly slower.

Another, different, representation of complex numbers is the polar form which
we write as z = rel?. Here, r is a positive real number which stands for the
absolute value of z and € is a number in [0, 27) which stands for the angle with
the positive horizontal axis. Under this representation, multiplication is easy
to write down, but now addition becomes more difficult. These two different
representations of the complex numbers complement one another; depending on
your task, you would choose one or the other (or perhaps an entirely different)
representation. For instance, in electronic circuits, you use a + bi, whereas if
you are modelling a whirlpool, you would use the polar form.

In algebra, a representation has a stricter definition: it usually involves
casting your mathematical concept in terms of matrices. We will get to that
later but let’s start with a closer look at the concept of groups. The definition
of a group was also given in a previous snapshot [6], so read both!

Before looking at it more formally, let me give you the following two examples
of groups: the collection of all whole numbers, or integers, denoted Z, and
the collection of fractions, or rationals, denoted QM For both of these sets of
numbers, one may “combine” together any two of those numbers by addition or
multiplication and produce a third, and the third always belongs to the set.

A group is a set of objects, usually denoted G, with a rule that tells you how
to “combine”; or “multiply”, any two objects in G to produce another one. The
multiplication rule® must satisfy three properties: The first one is that there is
an identity object, denoted 1, and for any object x in G, the object x - 1—what
you obtain when you multiply z and 1 together—is still x, and the same is true
of 1-x.

Why did I say that both -1 and 1-x are 27 We have not required that z -y
is always equal to y - . In some groups they are, and in others they are not.
If z-y =y -z for any two elements = and y, then the group is called Abelian.
Both sets Z and Q with the usual multiplication rule are Abelian, and Q is an
Abelian group with the usual multiplication, as long as we exclude 0. We will
see that this has to do with the impossibility of dividing by 0.8

Actually, electrical engineers use j to denote the square root of —1.

It is denoted by Z because the German word for “integers”, Zahlen, begins with a “z”.
In this case we use Q because the fancy name for fraction is “quotient”.

It has to be emphasized that the group multiplication is rarely the same as the usual
multiplication of numbers. For example, we will see later that the set of integers cannot be
seen as a group if we use the usual multiplication as the group multiplication rule; however, if
we use the usual addition of numbers as the “multiplication” rule, then it works!

6] Even in the most advanced mathematics, we still don’t divide by 0. It’s just generally
not a good idea, there isn’t some kind of super-fantastic math that allows you to do it. Well,
sometimes you can, but you have to be really careful.



The second property is that, given any object z in G, there is some other
object, denoted by x~! and called the inverse of x, and this object has the
property that z-z~! = 1, and so does ! - z. Now we see that Z is not a group
with multiplication rule given by the usual multiplication of numbers, because 2
is in Z, but there is no element 2~ ! in Z such that 2-27! = 1. Such an element
is 1/2, which does lie in @, but not in Z. This also explains why 0 needs to
be excluded if we want Q to form a group with the usual multiplication: the
element 0 cannot be inverted. On the contrary, the usual addition is a valid
“multiplication” rule for both Z and Q.

The third property is a bit more abstruse: if I give you three objects from Q,
called z, y, and z, and ask you to tell me their product, you can do so. But
you don’t multiply all three together simultaneously, because multiplication is
only defined two at a time. So you can multiply = and y together, and then
multiply the result by z, or multiply y and z, and then multiply = by y - z. We
want to get the same answer whichever way you break down the problem. This
is called associativity. Written in symbols, we have

(-y)-z2=2-(y-2).

If this holds, it means I don’t need to be careful about what I mean by x -y - z.
There are non-associative structures in mathematics, possibly most importantly
“Lie algebras”, but most things you can imagine are associative. So the final
requirement for G to be a group is that it has the property of associativity.

So we can say now that the Monster group is a huge set with a multiplication
rule that has an identity object, all elements have inverses, and the multiplication
rule is associative.

It doesn’t look like we have done this, but we have codified in mathematical
language the concept of symmetry. The symmetries of anything—a square,
Rubik’s cube, an equation, a planetary system—form a group. The easiest form
of representation in group theory is to be given a group in one form, and then
represent it by constructing it as the symmetries of some object.

For instance, consider all ways of moving around four bottles, labelled 1,
2, 3, and 4. We start off with the bottles in order from left to right, 1, 2, 3
and 4, then we swap them in any way. Bottle 1 can be moved to any of the four
places, so there are four options for this. Bottle 2 can be put anywhere, except
wherever Bottle 1 has gone, so there are three slots it could occupy. Now there
are only two places Bottle 3 can fit in, and Bottle 4 is then forced to enter the
last open position.

So how many ways are there to move around these four bottles? The first
can go to four places, then the second to three places, so there are 12 =4 x 3
different ways to distribute the first two bottles. Then two options for the third



means 24 = 4 x 3 x 2 possible ways to move around the first three bottles.
Finally, the fourth bottle can only be placed in the last remaining spot, so there
are 24 different ways to move around the four bottles.

There are also 24 rotational symmetries of a cube, that is, 24 different ways
of how the six faces can be arranged by rotating the cube. To see this, note
that a rotation can make any of the six faces be facing down. Once the bottom
face has been chosen, we can choose one of the four adjacent faces (but not the
face on the top) to be the forward face. Thus there are 24 = 6 x 4 possible
rotational symmetries of the cube.

Both of these are groups, as one may multiply two rearrangements of 1,2, 3,4
by doing one and then doing the other, and one can multiply rotational sym-
metries as well, again by doing one, then doing the other. In fact, these two
denote “the same” group. The best way to see this is to consider the diagonals
of the cube, that is, the lines passing through opposite corners of the cube.

There are four of these, and any rotational symmetry of the cube produces
a specific rearrangement of the four diagonals. One can see that in fact this
rearrangement of the diagonals determines the rotational symmetry, so we can
associate to every rotational symmetry a rearrangement of 1,2, 3,4, and to every
rearrangement of 1,2, 3,4 we can associate a rotational symmetry. Furthermore,
this function expressing a symmetry of the cube as a rearrangement of four
elements satisfies an important property: if you multiply two elements together,
and then apply the function, you get the same answer as if you apply the
function to the two elements and then multiply them. In notation, we write

fl-y) = f(x)- fy).

A function f between groups with this property is called a homomorphism.

Now we can come back to representations. A representation of a group is a
homomorphism from this given group to a particular group, called the “general
linear group”. This is the group of “linear transformations” of a space, which
is a technical way to say it is the group of all matrices that have an inverse.



Matrices are arrays filled with numbers and there are again rules on how to
multiply them, so we can ask whether matrices form a group. This is in general
not true: first, if you want to be able to multiply any two matrices that you
pick from a set, they all need to have the same number of rows and columns. If
the number of rows and columns are the same then you can take the identity
matrix I, which is the matrix

1 0 0

7— 0 1 7
0
0 0 1

and this at least has the property that, for any other matrix M, M - I = M and
I-M = M. However, if M is a matrix, there is not always a matrix N such
that M - N = I. This is why we explicitly ask for our matrices to have inverses:
for every matrix M we consider, there will be such an inverse matrix N.

So as long as you stick to matrices with inverses, you obtain a group, denoted
GL, (F), where n is the number of columns (or rows) and where F is whatever
collection of numbers you choose as entries for your matrices (for example, the
real numbers or the complex numbers). So a representation is a function from
a group G to GLy, (F) for some n and F.[7

A rotation in three-dimensional space can be described by a 3 x 3 matrix
and it has an inverse (rotating backwards). Therefore, the function from
rearrangements of 1,2, 3,4 to rotational symmetries of the cube translates in
our new language to a homomorphism from the group Sy to GL3(R). We use
the symbol Sy for the group of all rearrangements of 1,2, 3, 4, and R to denote
the real numbers. Similarly, C denotes the complex numbers.J

To start analysing groups, we look at their subgroups. Subgroups are easy to
define: a subgroup H of a group G is a subset of G that is also a group with the
same multiplication. So the non-zero rationals are a subgroup of the non-zero
real numbers, with group multiplication being given by the usual multiplication

The letter F is chosen because it stands for “field”. This is like a group, but this time you
can add and multiply. You can also subtract and divide (but not by zero, see Footnote 6) and
it has to satisfy some nice properties, such as associativity for addition and multiplication.
The final requirement is that 0 and 1 aren’t the same, which you had probably never really
worried about before now. The real and complex numbers form fields, but the integers do
not, for the same reason they do not form a group with the usual multiplication: you cannot
divide.

If we consider all rearrangements of 1,2, 3,4, 5, we write S5. What do you think Sg means?
B For R and C, the choice of letters is kind of obvious.



of numbers, because the product of any two rational numbers, that are by
definition also real numbers, not only is a real number but even is rational.

We return to our example of Sy, which is called the symmetric group. The
elements of this group, the rearrangements of 1,2, 3,4, are called permutations.
There is a beautiful and compact notation for permutations, called cycle notation.
For example, suppose that bottle 1 moves to where bottle 3 is, pushing bottle 3
out. Bottle 3 has to go somewhere else, so it moves to bottle 4’s place, pushing
it out. Bottle 4 in turn moves back to the empty space left by bottle 1, and
bottle 2 stays where it is. This would be denoted by

(1,3,4)(2),

so the way to read this is that 1 moves to 3, 3 moves to 4, and 4 completes
the loop, or cycle, by heading to 1. With this notation, we can easily describe
elements of Sy, and indeed S,, for any number n; for example,

(1,6,3,9)(2,7)(4,10,8,11, 12)

is a permutation of twelve bottles.10

This notation is also very handy to describe the inverse of a permutation.
To undo the permutation (1,3,4), we have to do (4,3, 1), so we just read each
cycle in the opposite direction.

In order to give a subgroup, we just give one or a few elements of it, and
then keep multiplying the elements together until we find every element of the
Subgroup. The subgroup is then generated by the collection with which we
started. The subgroup generated by the element (1,2, 3,4) consists of the four
elements

(1,2,3,4), (1,3)(2,4), (1,4,3,2), 1

(Check this!) Here 1 stands for the identity element that corresponds to no
permutation, that is, (1)(2)(3)(4) in cycle notation. Another example of a
subgroup is given by the four elements

(1,2)(3,4), (1,3)(2,4), (1,4)(2,3), 1.

You can check that if you multiply the first two you obtain the third, and if
you multiply the second and third you obtain the first.

The latter subgroup is also “normal”. A normal subgroup is a subgroup H
of G where, if h is an element of H, and ¢ is an element of G, then the
product g~' - h- ¢ is always an element of H. If you have studied linear algebra

We often do not write points that are not moved in the permutation, so (5) in this case.
This works if the group is finite. If the group is infinite, we have to include inverses of the
chosen elements as well.



before, you might recognize an expression B~'MB as the application of a
change of basis matrix B to the matrix M. The idea is similar: a normal
subgroup is one that is not moved around by a “change of basis”.

Of the two subgroups with four elements above, the first is not normal in Sy
and the second is. To see the first, you can check that

(1,2)71(1,2,3,4) - (1,2) = (1,3,4,2),

which is not in the subgroup.

Normal subgroups of groups are analogous to divisors of an integer: in both
cases one may “divide”. You know how to divide by a number and there is a
construction of a “quotient group”, where one divides a group by a subgroup,
and we even write G/H to show that we mean a fraction in some sense. This
can only work when the subgroup is normal.

If there is an analogue of division for groups, there must be an analogue of
being a prime. Indeed, a simple group is a group G with no normal subgroups
other than G itself and the trivial subgroup just consisting of 1, which is
always a normal subgroup, like 1 is always a divisor of any integer. Just as we
can write every integer as a product of divisors, we can describe every group
through simple groups. For this reason, we are interested in understanding the
simple groups.

We focus on finite groups now, that is, groups G possessing only a finite
number of elements which is denoted by |G|. So the symmetric groups S,
are finite groups with |S,| = n!, but the groups Q and R (without 0) with
multiplication are infinite groups. Combining our notions, we produce the
notion of a finite simple group, a simple group with only finitely many elements
in it.22 The easiest example of a finite simple group is not the group with
one element in it (this is by definition not a simple group, similarly to 1 not
being a prime), but the group with two elements in it. The two elements can
be denoted by +1 and —1, with the usual multiplication. Since there are no
subgroups other than itself and 1, it must be simple.

Generalizing the smallest simple group, the cyclic group C,, is the sub-
group of S,, generated by the single element (1,2,3,...,n). There are ex-
actly n elements in C,, and every element can be written as a power of the

There are definitely infinite simple groups. And I am definitely not going to talk about
them here. There lurk “Tarskil3! monsters”, an even more horrible beast than the Monster
finite simple group. There’s also a Baby Monster. With all these groups being called monsters,
I can only assume that group theorists had a lot of nightmares as children.

Yes, the same Tarski as in the Banach—Tarskil14] paradox.

No, an anagram of “Banach Tarski” is not “Banach Tarski Banach Tarski”. However, an
anagram of “Banach Tarski” is “I ransack Bath”. (If you don’t understand this joke, check
out the Wikipedia entry on the Banach—Tarski paradox.)



element (1,2,3,...,n). The group with two elements, +1, can be also thought
of as the group consisting of (1,2) and 1, hence as the cyclic group Cs. This
group C), turns out to be simple if n is a prime number, so our first family of
infinitely many simple groups are the cyclic groups Cj, for p any prime number.

Another type of simple groups is alternating groups. It’s fairly easy to believe
that one may obtain any permutation of a bunch of objects from repeatedly
swapping pairs of objects. Imagine wanting to permute placecards at a dinner
table: you make the first swap to place the first person where you want them
to go, then another swap to get the second person where they should be,
and so on. It turns out that there are lots of different ways to perform a
permutation as a sequence of swaps, but these different sequences will either
all have an odd number of swaps or all have an even number of swaps in
them. So all permutations can be named “even” or “odd” accordingly. An
even permutation multiplied by an odd permutation is an odd permutation,
and so on, so multiplying permutations looks like adding integers: even times
odd is odd, odd times odd is even, and even times even is even. In particular,
the even permutations form a subgroup of the symmetric group S,,, called the
alternating group and denoted by A,,. It can be proven that if n is at least 5
then A, is always a finite simple group.

There are other finite simple groups though. In fact, we know exactly how
many others there are, thanks to a decades-long programme to classify them
all, which was finally completed in 1980,25) in a disparate collection of journal
articles published by mathematicians from around the world. The original
version, depending on what you consider part of the Classification of Finite
Simple Groups (CFSG) and what you consider just fun group theory articles,
is probably about 8000 pages, although estimates vary. There is a project to
write down a coherent and complete proof, which is currently at ten volumes
and counting [1, 7]. There’s also a project to try to simplify parts of it7 in
the hope of chopping off a volume or two from the proof.

The result of CFSG is much easier than its proof, although still far beyond
what I can say here. Broadly speaking, there are four kinds of simple groups:

the cyclic groups C}, for p a prime;

the alternating groups A,, for n > 5;

sixteen infinite families of groups of matrices, called groups of Lid7 type;
twenty-six sporadic simple groups, the largest of which is the Monster.

A WN =

Or 2004, depending on who you talk to.

In fact, two separate projects, but they are happening simultaneously so I’'m counting
them as one.

Pronounced “lee” rather than “lie”. Well, actually it should be pronounced closer to
“lee-uh”, but people just say “lee” instead.



So here we have our first sight of the Monster. It is one of these sporadic
groups, each a single point where happenstance has forced an object into being.
If you try to construct a group with certain properties, normally you fail, but in
each of these twenty-six cases a unique collection of properties comes together,
the circumstances are just right, and a group can be made. There are some
patterns in a few of them, and some can be related to one another, but usually
when you want to prove something about them, each one must be considered
separately.

On the other hand, for groups of Lie type, there is a fiendishly complicated
theory, but it is in some sense uniform, so one can often consider all of them at
the same time, or at least get some of the way with the problem using general
methods before having to switch to a case-by-case analysis.

So now we want to understand these finite simple groups, and one of the most
interesting things about them are their representations. Recall that a repre-
sentation is a homomorphism from a group to some GL, (F). Representations
have subrepresentations just as groups have subgroups, only this time, like with
numbers, given any subrepresentation, one may always quotient out by it, so
there’s no need to introduce such thing as a “normal” subrepresentation. We
therefore have, for a given finite group G, the collection of simple representations
of it, that is, the representations that have exactly two subrepresentations. Take
one of these simple representations with F = C, and call it p. Then p is a
function from G to GL,(C) for some integer n, and so to every group element
we can associate a matrix. To study this further, we look at “traces”. The trace
of a matrix is the sum of the diagonal entries of it:

aip @iz -+ Q1p
. : n
az1 a2 : .
tr = (27
: : i=1
a’nl DR DY ann

If, for a given representation p, one takes the trace of each of the matrices p(g)
with ¢ € G, one obtains a new function G — C, called the character of the
representation p.

The theory of characters is beautiful. The characters of all simple represen-
tations can be placed in a square table, called the character table of a finite
group. Each row corresponds to a character and the entries in this row are
determined by evaluating that character on a group element. An example of
such a table, for the smallest sporadic simple group, the Mathieu group M,



My |1 g1 92 935 ga G5 96 g7 gs 9o
x1 |1 1 1 1 1 1 1 1 I 1
Y2 |10 2 1 2 0 -1 0 0 -1 -1
xs |10 =2 1 0 0 1 =2 —/=2 -1 -1
x4 |10 =2 1 0 0 1 —/—2 V=2 -1 -1
xs |11 3 2 -1 1 0 -1 -1 0 0
xe |16 0 -2 0 1 0 0 0 5 0
xr |16 0 -2 0 1 0 0 0 5 6
xs |44 4 -1 0 -1 1 0 0 0 0
o |45 =3 0 1 0 0 -1 -1 11
xio |55 -1 1 -1 0 -1 1 1 0 0

Table 1: The character table of the smallest sporadic group, the Mathieu group
M1 which has 7920 elements. The element is a complex number
that is a sum of 11th roots of unity, such that §+J¢ = —1 and [6]? = 3.

is given in Table 108 Tt contains a lot of important numerical data that the
expert can use to understand the structure of finite groups.

The character tables of the finite simple groups are reasonably understood:
Character tables for cyclic groups are completely understood, and are very easy
to write down, for the alternating groups there is a fast formula to find the table,
for the groups of Lie type there are general theorems about their shape, but
some details still need to be worked out, and as a result of a long collaboration in
Cambridge between a group of chain-smoking mathematicians 19, the character
tables of all sporadic groups were computed. The character table for the Monster
has 194 rows and columns, and even in small print on A3 paper, it takes up
eight pages.

But representations are maps from G to GL,,(F) for a field F, as we said earlier.
Character tables capture in its entirety the representation theory for F = C,
but what about other fields? The smallest field has just two elements, 0 and
1, and 14+ 1 = 0, but all other sums and products behave as you expect. In
general, given any prime p, there is a field with that number of elements in it,
based on “modular” arithmetic, the same sort of arithmetic you use every time
you count the hours in a day. Choose some number n, say n = 12. We can

There are really 7920 columns, one for each element, but there are only 10 different
columns. For example, the second column appears 165 times. If g and h are elements of the
group then the columns for h and g~ ! - h - g are the same, and this is why columns repeat so
often.

No, seriously. Apparently the room where these tables were being prepared was full of
smoke.
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Figure 1: An example of a graph.

define addition and multiplication of integers as usual, but then we divide by n
and take remainders. This is how things work in time: if it is 11 o’clock then
15 hours later it will be 2 o’clock, not 26 o’clock.

For n = 12, this isn’t a field, because a field is supposed to behave like the
rationals or reals, and there two non-zero numbers don’t multiply together to
yield zero, whereas for n = 12, we have 2 x 6 = 0 (as 0 is the remainder upon
division by 12). One can only make a field if n is a prime, but if this is the case,
then this process constructs a field, where you can add, subtract, multiply, and
divide29 to your heart’s content. This field is denoted by F,,.

Representation theory over IF,, can be studied whenever the prime p divides
the number of elements |G|. However, it is much more difficult than over C,
and we are still far away from understanding what is going on. One case, that is
still within our grasp, though, is where p divides |G| but p? does not divide |G].
For instance, if G = Ss, then |G| = 120, and 120 factorizes as 23 -3 -5, so the
possibilities for such a p are 3 and 5 for this group.

Here one may describe the relationship between the representation theories
over C and ), using a picture, called a “Brauer tree” which is a specific graph.
A graph is a collection of points—called vertices—with lines—called edges—
connecting some pairs of vertices. As an example, see Figure 1. A tree is a
graph where you can travel along edges to get from any vertex to any other in
exactly one way. To any group G and any prime p where p divides |G| but p?
does not, one may associate a collection of trees, called Brauer trees, that allows
us to describe with some pictures the representation theory of G over both C
and I, simultaneously. This is a fantastic achievement, one that has not been
replicated for any prime p where p? divides |G |

Except by zero...
This remains one of the most ambitious goals of group representation theory, to be able to
get as much a grasp on the general case as we have on the special case with Brauer trees.
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Figure 2: A line (left) and a star (right).

The vertices of this graph are labelled by the characters of G that come
from the character table, and the edges by the simple representations over F,,.
Knowing which two characters are connected by an edge gives us enough data
to construct every representation of G over F,, not just the simple ones.

It turns out that most Brauer trees are either lines or stars, as in Figure 2. An
article by Walter Feit in the 1980s [4] shows that we can obtain all Brauer trees
of finite groups just by looking at the Brauer trees of finite simple groups.
So we need to look through the list of finite simple groups, finding all their
Brauer trees.

Brauer trees of cyclic groups are just a single edge between two vertices, so
are easy to describe. Those of symmetric and alternating groups were found
decades ago. They appear in the work of Gilbert de Beauregard Robinson in
the early 1960s [8], and they all are either lines, or a cross between a line and a
star, called a “windmill”; which looks like blades of a windmill. For groups of
Lie type, many Brauer trees are lines again, although some can be more funky.
Paul Fong and Bhama Srinivasan [5] (see also Feit [4]) determined them for
six families of groups of Lie type, called “classical” groups. For the other ten
families, of “exceptional” groups, many trees had been found over the decades.
Finally, the most difficult trees were solved in a work of Olivier Dudas, Raphaél
Rouquier, and myself [2], and a work of Radha Kessar and myself [3], so the
trees for groups of Lie type are (with one exception) completely known.

Thus all Brauer trees are known for the cyclic groups, alternating groups,
and more or less for the groups of Lie type. What about the sporadic simple

Technically, he proved that you need only consider “quasisimple” groups, which are very
close, but not exactly the same as simple groups.

This last work determines the trees of what are known as “isolated blocks”, but there is a
single tree that we have not completely determined at the time of writing, and there are two
possibilities for it. The theoretical methods we have give constraints on the possible shapes
of the trees: the number of vertices, the total number of edges coming out of each vertex,
and so on. The constraints are enough to determine the tree uniquely, except for this one
outstanding, and very frustrating, case. All other trees are now known, though.
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Figure 3: A Brauer tree for the Thompson sporadic simple group.

groups? Some of the techniques used in previous cases work here as well, but
not others. Everything ends up being shoved into a big computer, and we hope
that the information we can glean is enough to determine the trees uniquely.
For example, Figure 3 gives a Brauer tree for the Thompson sporadic group
and p = 19.

In fact, we can determine all trees with this method, ezcept for two of the
groups: the Baby Monster and the Monster. For each of them, some of the
trees can be constructed, but not all of the edges can be placed on the trees.
The number of elements in the Monster was given at the start of this article,
and factorized this number is

246.320 .59 .76.112.13%.17-19-23-29-31-41-47-59 - 71.

The Brauer trees are known for p = 17,19, 23,31, but are still out of reach
for p =29,41,47,59,71. We need a new ideal2¥ to obtain these final trees and
unlock more of the Monster’s secrets.

There’s been a couple of new ideas recently, but unfortunately the new idea also needs to
work.
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