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Reflect ions on hyperbol ic space
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In school, we learn that the interior angles of any tri-
angle sum up to π. However, there exist spaces dif-
ferent from the usual Euclidean space in which this
is not true. One of these spaces is the “hyperbolic
space”, which has another geometry than the classi-
cal Euclidean geometry. In this snapshot, we consider
the geometry of hyperbolic polytopes, for example
polygons, how they tile hyperbolic space, and how
reflections along the faces of polytopes give rise to
important mathematical structures. The classifica-
tion of these structures is an open area of research.

1 What is hyperbol ic space?

Hyperbolicity is an interesting concept in geometry. A hyperbolic space (such
as a hyperbolic surface in the 2-dimensional case) is defined by the property
that it has negative curvature. To get a sense of what this means in terms of
geometry, compare this to the more familiar Euclidean space, which has zero
curvature everywhere. For a surface, curvature describes, loosely speaking, the
deviation from being a flat plane. On a surface with negative curvature, the
sum of interior angles of a triangle on the surface is less than π radians. On the
contrary, on a surface with positive curvature, the sum is greater than π radians.

1 Anna Haensch is a US Junior Oberwolfach Fellow supported by the NSF.
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Figure 1: Triangles on surfaces with different curvatures. A flat plane has zero
curvature, a sphere has positive curvature, and a saddle has negative
curvature.

Figure 2: The negative curvature in the folds of the filter feeding coral reef
plays an important role in maximizing its surface area.

In Figure 1, we see examples for the different curvatures and in Figure 2, we
see an object of negative curvature in reality.

Studying Euclidean space, and its associated Euclidean geometry, begins
with a set of grounding axioms to describe points, lines, planes, and shapes as
we experience them right around us. Hyperbolic space has different axioms to
describe these objects.

Therefore the change in curvature between Euclidean and hyperbolic space
results from an important geometric difference between the two spaces. This
difference can be detected by comparing the properties of parallel lines. In
Euclidean geometry, we have the parallel postulate:

Consider a line ` and a point P not on `. In the plane containing
both ` and P , there is exactly one line passing through P that
does not intersect `.

This line is the unique parallel line to ` which contains the point P .
In hyperbolic space, which exhibits hyperbolic geometry, the parallel postu-

late is replaced with the following:

Consider a line ` and a point P not on `. In the plane containing
both ` and P , there are many lines passing through P that do not
intersect `.
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Therefore the concept of unique parallel lines, as we know it from everyday
life, no longer works in hyperbolic space. We now denote the 2-dimensional
hyperbolic space by H2, which is also called a hyperbolic plane. In a hyperbolic
plane, the negative curvature means that every point is a saddle point, which
says that all tangents are parallel to the surface, but the point itself is not a local
extremum. The appearance of a saddle point can be visualized by its embedding
in Euclidean space. An embedding is one instance of a mathematical structure
contained in another instance. More precisely, embedding the saddle point in
Euclidean space means that there exists an injective and structure-preserving
map from hyperbolic space to Euclidean space. So the saddle point can be
drawn in Euclidean space as seen in Figure 1.

A theorem of the influential German mathematician David Hilbert
(1862–1943) from 1901 [8] states that a hyperbolic plane cannot be entirely
embedded into 3-dimensional Euclidean space – so we cannot draw a hyperbolic
plane in Euclidean space – but partial embeddings of spaces with negative cur-
vature into spaces with zero curvature can be visualized. So the visualizations of
hyperbolic space seen in Figure 1 and Figure 2 are just partial embeddings of H2

in Euclidean space. This is convenient because our eyes and brains are most
accustomed to interpreting visual input in Euclidean space, but inconvenient
because the true geometry of hyperbolic space is lost in these embeddings.

One practical way to visualize the complete hyperbolic plane equipped with
all of its geometric properties is by the Poincaré disk model, named after the
French mathematician Henri Poincaré (1854–1912). In this model, every point
of H2 is represented by a point in the unit disk, and straight lines in H2 are
given by curved lines in the unit disk that intersect orthogonally with the circle
that is the boundary of the disk, see Figure 3.

Figure 3: In this Poincaré disk model of H2, the thin black lines all pass through
a common point and are all parallel to the bold blue line.
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Figure 4: A tiling of the hyperbolic plane by triangles with angle measurements
π
2 ,

π
3 , and

π
7 .

Figure 5: A tiling of H3 by right-angled dodecahedra.

In general, the curvature condition of hyperbolic space means that polytopes
in hyperbolic space do not satisfy the familiar geometric constraints of Euclidean
space. For instance in H2, the sum of the interior angles of a triangle is such
a constraint that is different in Euclidean space. We will explore this further.
Using the Poincaré disk model, we can visualize polygons on the hyperbolic
plane. For example, let us consider a tiling of H2 by hyperbolic triangles, as
seen in Figure 4. All of the triangles in Figure 4 share the common angle
measurements π

2 ,
π
3 , and

π
7 whose sum is 41π

42 , hence smaller than π. The
defining property of tilings is that they consist of geometric shapes such as
triangles which cover the whole disk without overlapping and with no gaps.
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Similarly, we may consider tilings of higher dimensional hyperbolic space
by polytopes. Polytopes are a generalisation of the 2-dimensional polygons.
For an example in dimension n = 3, Figure 5 shows a tiling by right-angled
dodecahedra, 3-dimensional polytopes with 12 faces. 2 For dimensions greater
than 3, these hyperbolic tilings become very hard to visualize. The main focus
of the remainder of this snapshot will be the mathematical underpinning of
higher dimensional tilings of hyperbolic space.

2 Ref lect ions in hyperbol ic space

Consider now the n-dimensional hyperbolic space, denoted by Hn. An isometry
of Hn is a map from Hn to itself that preserves distances 3 . An example of an
isometry of the hyperbolic plane H2 is the reflection across a line. The set of all
isometries, which we denote by Isom(Hn), forms a mathematical structure called
a group. Roughly speaking, a group is a set in which it is possible to combine
any two elements to obtain a new one, such as composing two maps to get a
new map. We will not say much more here concerning the precise definition of a
group. What we would like to explore more deeply, is the relationship between
elements of Isom(Hn) and the tilings described in the previous section.

Consider the triangular tiling shown in Figure 4, and consider the set of
isometries corresponding to reflections of the triangles across their edges. This
set of isometries forms a subgroup of Isom(Hn), called the Hurwitz triangle
group. In dimension n = 3, we can consider the analogous construction by
looking at the subgroups generated by reflections of 3-dimensional polytopes
across their faces, like those seen in Figure 5.

A subgroup of Isom(Hn), which contains reflections on the faces of an n-
dimensional hyperbolic polytope is called a hyperbolic reflection group. The
question of classifying hyperbolic reflection groups has been a driving force
behind much research in an area called geometric group theory over the past
century. The goal of classifying is to find properties to divide objects into
classes. Hyperbolic reflection groups in dimension 2 were already completely
understood in the late 1800s from work by Poincaré [11] and the German
mathematician Walther von Dyck (1856–1934) [7]. Work in dimension 3 did not
follow until nearly 100 years later with E.M. Andreev [3, 4] and a great part
still remains to be understood in higher dimensions. For an overview of results
in the classification of hyperbolic reflection groups, the reader is directed to the
2016 survey paper on this topic by Mikhail Belolipetsky [5].

2 This image is a screen shot captured from the computer game “Curved Spaces” by Jeff
Weeks which includes a 3-dimensional hyperbolic space visualizer.
3 Details about the distance in hyperbolic space and more concrete details and examples in
hyperbolic geometry can be found in [2].
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In the last section, we discuss an open question related to the classification
of hyperbolic reflection groups in higher dimensions.

3 The classi f icat ion problem

As it is often the case in mathematics, the problem of classifying hyperbolic
reflection groups is best broken down into components, classifying families
of such groups satisfying some additional conditions. One such condition is
arithmeticity, which imbues the natural group theoretic structure of the reflection
group with some number theoretic conditions.

For our purposes, the rather complex definition of arithmeticity can be best
illustrated through one particular example of an “arithmetic subgroup of the
simplest type”, which arises in connection to quadratic forms. We want to
think of quadratic forms as polynomials (in possibly several variables) where all
terms are squares or products of exactly two variables. These polynomials can
have coefficients in the field of rational numbers Q or, for example, in a number
field which is a finite extension of Q. Without introducing too many technical
details, we note that an arithmetic subgroup of the simplest type is a subgroup
of Isom(Hn) that is equal to the set of integral isometries of a quadratic form
(subject to some arithmetic constraints) over a number field.

It is a result of Ernest Vinberg [12] that a hyperbolic reflection group can only
be arithmetic if it is an arithmetic subgroup of the simplest type. Therefore, to
classify the arithmetic hyperbolic reflection groups it is sufficient to classify those
which are arithmetic of simplest type. This is an active topic of research, deter-
mining which quadratic forms over which number fields give rise to arithmetic
hyperbolic reflection groups, particularly in finding the possible number fields.

Moreover, a helpful tool to understand the classification problem is another
important theorem of Vinberg [13], namely, that there are no arithmetic hyper-
bolic reflection groups of Isom(Hn) for n ≥ 30. So our research for arithmetic
reflection groups needs only to extend up to 30-dimensional hyperbolic space.
Of course, this is already far too large to visualize, but it should still be possi-
ble to explore the visualization of the mathematics computationally in these
dimensions. It is still an open problem, to determine whether Vinberg’s result
is still true even if we have groups that are not arithmetic.

Instead of asking to find all arithmetic hyperbolic reflection groups, we can
just ask for those which are maximal, that is, they are not properly contained in
any other hyperbolic reflection group. In this case, we know that there are only
finitely many groups satisfying this condition, a result first proven by Viacheslav
Nikulin in 2007 [10]. Further advances in this area, specifically in determining
the corresponding number field for an arithmetic hyperbolic reflection group,
have been made in [1], [6], and [9], among many others.
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Figure 1 “Curvatures of surfaces”. Licensed under Creative Commons Attribu-
tion-ShareAlike 4.0 International License,
https://januscosmologicalmodel.com/static/images/curvatures.png,
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Figure 2 “Folded Coral Flynn Reef”. Author: Toby Hudson. Licensed under
Creative Commons Attribution-Share Alike 3.0 via Wikimedia Commons,
https://commons.wikimedia.org/wiki/File:Folded_Coral_Flynn_Reef.jpg,
visited on July 30, 2019.

Figure 3 “Poincaré disk hyperbolic parallel lines”. Author: Trevorgoodchild.
Licensed under Public Domain https://commons.wikimedia.org/wiki/File:
Poincare_disc_hyperbolic_parallel_lines.svg, visited on July 30, 2019.

Figure 4 “H2checkers 237”. Author: Tamfang. Licensed under Public Domain
https://commons.wikimedia.org/wiki/File:H2checkers_237.png, visited
on July 30, 2019.

Figure 5 Screenshot of “Curved Spaces”. Author: Jeff Weeks. Licensed under
Freeware (GNU General Public License) http://www.geometrygames.org/
CurvedSpaces, visited on July 30, 2019.
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