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Nowadays there is a strong demand to simulate even
real-world engineering problems on small computing
devices with very limited capacity, such as a smart-
phone. We explain, using a concrete example, how
we can obtain a reduction in complexity – to enable
such computations – using mathematical methods.

1 Cer t i f ied computer simulat ions

Thanks to present-day computing power, it is possible to calculate the solutions
to equations that model, to a varying degree of accuracy, real-world systems.
Computing a set of solutions with input that represents different conditions of
the system, we can then display it in succession (as images, for example) and
get a simulation of the system. Computer-based simulations are omnipresent in
today’s life. Indeed, every day we see animations of weather systems, mechanical
engines, and space probes fly-bys, to name a few examples. But what is the
process that is used to produce the data that we see as pictures or movies? And
how can we trust that these animations are “sufficiently close” to reality? Of
course, using animations for teaching or entertainment purposes is nice and one
might not usually wonder if such a simulation is (in whatever sense) correct.
On the other hand, more and more important decisions are made based largely –
or even solely – on computer simulations. Signing blueprints for a bridge based
upon computer simulations of earthquakes requires that we can guarantee that
the simulation is sufficiently accurate when compared with “reality” (such that
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the difference is at most 5%, say). Writing this in a formula reads:

distance(Reality, Simulation) ≤ DesiredAccuracy. (1)

We call a simulation method certified if we can mathematically prove (1) for it.
There are some questions and challenges that immediately arise from this desire:

• One first needs to detail Reality. The process of translating real phe-
nomena into mathematical problems is called mathematical modeling. It
might be said that this is what natural sciences are very much concerned
with. 1 Depending on the stage of scientific development and purpose
of the model, these models may vary greatly in the accuracy by which
they resemble the real phenomena. As an example, take a model for
a ball thrown in the air: On one end of the complexity spectrum we
have a very simple model which translates to the (fairly) simple equation
h(t) = −4.9t2 + v0t + h0. This model only takes into account earth’s
gravity (g/2 ≈ −4.9), the ball’s initial velocity (v0), and its initial height
(h0). On the other end of the complexity spectrum we might have a model
that also takes into account air resistance, side winds, humidity, the exact
shape of the ball, and more. The second model is obviously much more
accurate, but also much more complex. It has to be verified that the
mathematical problem (model) represents the real process sufficiently
well. The mathematical analysis is then devoted to the question whether
the mathematical problem admits a unique solution that is robust with
respect to changes of input data. 2

• One needs to specify in which sense distance in (1) is to be understood.
The simulation method to be chosen and the mathematical analysis needed
to ensure (1) crucially depend on this choice.

• We do not know Reality. If we did know it, there would be no need
for a simulation. Thus, also the distance on the left-hand side of (1) is
unknown. Similarly, in many cases (for example, turbulent flow), it is
not even known if a solution of the corresponding mathematical problem
exists (even though, of course, we can sometimes observe the real process
by experiments).

• It is straightforward to assume that the computer simulation is more
“costly” for smaller tolerances. The finer the resolution of the simulation,
the more computer power (in terms of memory, computing time, number
of processors, . . .) will be needed. Moreover, increasing the complexity of
the problem to be simulated also requires increasing computing power.

1 For an example detailing a process of modeling see Snapshot 7/2015 Darcy’s law and
groundwater flow modelling by Ben Schweizer.
2 For an example of a system which is very sensitive to differences in data see Snapshot
5/2015 Chaos and chaotic fluid mixing by Tom Solomon.
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Computers have become enormously powerful over the last decades. However,
this fact does not mean that all relevant simulation problems can nowadays be
easily solved simply by using supercomputers:

1) The complexity of relevant problems has increased much faster than the
available computer power. For example, simulations of the human brain
or of quantum physical networks are completely out of reach.

2) More and more machines are controlled by micro-chips that serve as local
mini- or micro-computers in sites that demand simulations; for example,
hospitals and industrial facilities. These local micro-controllers have very
limited capacity both in terms of memory and in terms of computing
power.

Real-time on-site computing can be achieved in two ways. In the “cloud”
approach, the necessary computations are performed very rapidly – but on
remote servers, and then the outcome is transferred to the local machine.
Alternatively, in the “onboard” approach, all the necessary computations are
performed directly on the micro-controller. The onboard approach obviates the
need for any (slow, or fast) network connectivity and can thus be important in
fail-safe situations; conversely, the cloud approach enlists much more significant
resources, in particular storage, and hence permits treatment of larger problems.
In this snapshot, and in our example, we emphasize the onboard approach, yet
methods we describe here can be readily incorporated into either onboard or
cloud embodiments.

2 Dynamic posi t ioning of of fshore supply vessels

The demand for producing (also alternative) energy has increased the need for
offshore (oil drilling, wind turbine, wave energy) platforms. These platforms
have to be supplied by offshore supply vessels; see Figure 1. Conditions out at sea
are often rough: strong and changing winds, towering waves, dangerous currents.
Offshore supply vessels must be able to operate in even the most adverse weather.
And at the same time, they must maneuver with the utmost precision to ensure
that platforms can be approached safely. The aim is that the supply vessel can
keep its position even in wind and waves, while maintaining minimal drifting.
The process of such a maneuvering is called Dynamic Positioning (DP); see
[4, 6, 8, 12] for more details.

The mathematical model for the DP gets weather and water conditions
(in terms of measurements) as input and produces a control function to the
ship’s propulsion and steering systems in such a way that the vessel keeps its
position relative to the platform as much as possible. In addition, the required
energy for the propulsion has to be minimized. Obviously, this requires a
mathematical model for the motion of the ship on the water surface, which is a
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highly complex mathematical problem (see, for example, [11]), and can only
be simulated by supercomputers and at considerable expense – at least several
hours of computing time. On the supply vessel, however, DP has to be done
in real time using a relatively small onboard controller, comparable to a small
notebook.

Figure 1: Dynamic positioning for offshore supply vessels.

3 Comput ing on a mobi le device

How to perform DP on the onboard controller? We will use “smartphone” as a
synonym of such a small device with very limited capacity in terms of memory
and computing power, plus the desire to do the computations in realtime.

What is the di f ference between a supercomputer and a smar tphone?
This seems to be a question with an obvious answer: The computing power of a
supercomputer is by far larger than that of a smartphone – or any local micro
controller. The DP onboard-unit is nothing more than a small computer similar
to a smartphone. We would like to be able to do all DP computations on such
a smartphone (with no connection to a “cloud”), keeping in mind that a fully
detailed simulation would require several days on a supercomputer. Clearly, a
smartphone is not a supercomputer, but perhaps a smartphone can produce
results that achieve the same effect as those of a supercomputer. But how to
achieve this?

Parametr ic problems. Putting the DP problem in the terms of inequality (1):
Reality is the ship propulsion control and Simulation its High Performance
Computing (HPC) simulation (that is, the simulations performed on a super-
computer). However, both depend on the particular value of the parameters,
namely weather and water conditions (waves, currents), so we write Reality(p)
and Simulation(p), where p encodes all above mentioned input parameters. 3

3 And so the equations describing the propulsion and simulation are called parametric
equations and the problem to solve is a parametric problem.
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The onboard controller (our “smartphone”) should be able to approximate
the dependency of the propulsion control on p fast (in realtime) and in a
certified manner. That is, the onboard controller should provide a solution
Smartphone(p) for all reasonable parameters p, that fulfills

distance(Reality(p), Smartphone(p)) ≤ DesiredAccuracy. (2)

4 Model reduct ion and the Reduced Basis Method (RBM)

To achieve our goal we need a method for “reducing” a mathematical model
so even a smartphone can produce solutions from this model. The Reduced
Basis Method (RBM) has been proven to be a highly efficient model reduction
technique. It allows for an onboard efficient reduced simulation for parameterized
problems (those given in terms of parameters). We will now introduce the main
ingredients of the RBM.

Separat ion of of f l ine and onl ine phase

The first idea consists of an appropriate combination of the use of both HPC
and the onboard unit (the smartphone). Well before the supply vessel leaves
the harbor to the offshore platform, we do have time for HPC — this phase is
called offline. An RBM aims at finding an appropriate reduced model in the
offline phase that is later invoked onboard to determine the actual propulsion
control in the so-called online phase. In other words, we precompute an “Online
Dataset” in the offline phase.

This is done as follows: Recall that the parameter p contains weather and
water conditions, say (i) wind speed, (ii) wind direction, (iii) wave height, (iv)
wave length, (v) wave phase and (vi) wave main direction. This means that p
is a vector consisting of six entries. So the problem involves solving a complex
equation describing complicated relations between six quantities varying over a
large range. This might be possible for a supercomputer, but is way beyond
the capabilities of a smartphone. We want to reduce this complexity. One can
think of p as residing in a six-dimensional space (p ∈ R6). A way to reduce
the complexity of the problem is to reduce the dimension of the problem by
projection. This method can be pictured as projecting a shadow of a person
on the floor and checking whether it is still possible to recognize the three-
dimensional person by looking at their two-dimensional shadow. Recall that we
wish to guarantee that the reduced system allows for the bound in (2), so we
would like to reduce the system enough for its computations to be performed on
the onboard unit, but not so much that it is no longer accurate enough. Usually,
the maximal capacity of the onboard unit (in terms of memory and computing
power) is known and can be translated into a maximal dimension of the reduced
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system such that the Online Dataset can be stored and the computations can
be performed in realtime. Let us call this maximal size Nmax (say, 100). Bear
in mind, though, that Nmax itself might not be sufficient for the reduced system
to be a certified one.

The reduced system is generated by reducing the system to a one-dimensional
one and successively increasing the dimension – of course assuming (and mathe-
matically proving) that increasing the dimension results in a better quality of
the reduced system. For every dimension n (1 ≤ n ≤ Nmax), write Reduced(n, p)
for the solution of the reduced system of dimension n for a specific param-
eter p. Then, ranging over all possible p’s, find the parameter for which
distance(Reality(p), Reduced(n, p)) is maximal. Denote this parameter by
p(n). If this distance is smaller than (or equal to) DesiredAccuracy, we have
found a certified reduction – Smartphone(p). We know this since we chose p(n)

to be the point that gives maximal distance, so for all other values of p the
distance is even smaller and certainly adheres to the restriction in (2). If that is
the case for all p then (1) is also satisfied and we have a certified simulation. If
the distance for p(n) is larger than DesiredAccuracy, we increase the dimension
n and try again until we reach a dimension N for which (2) holds or stop when
we reach N = Nmax. The computation of Reality(p(n)) does not go to waste,
though, as we use it to determine the basis of the reduced system – in the
wording of the shadow analogy, we use it to position the lights in a way that
achieves the most recognizable shadow.

Let us summarize this process in the form of an algorithm: 4

Algorithm 1 Greedy algorithm.
1: for n = 1, . . . , Nmax do
2: choose p(n) as the maximal value of

distance(Reality(p), Reduced(n, p));
3: if {distance(Reality(p(n)), Reduced(n, p(n))) ≤ DesiredAccuracy}

N = n; STOP;
4: update reduced model by Reality(p(n));
5: end for.
6: N = Nmax; % If DesiredAccuracy is not reached.

4 An algorithm is a finite sequence of instructions to be performed step-by-step. Algorithms
are used most widely to describe the structure of computer programs. Note, not all algorithms
describe a finite process; for example: “1: Move one step forward. 2: Repeat 1.” This was
an example of a (infinite) loop which is one of the most common structures in algorithms.
Another form of a loops is “for each value in a range do some operations”. Another common
structure is the conditional: “if some condition holds then perform some operation”.
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When Algorithm 1 terminates, we either obtain a system of dimension Nmax
(which still might not satisfy (2)) or a system of smaller dimension N ≤ Nmax
which guarantees the accuracy demands (2). A couple of comments to the above
algorithm are in order:

• This method is called “greedy” 5 since we take the maximal value in line 2;
• The question if such a scheme terminates and, if yes, how fast, has been a

field of active mathematical research over the past years;
• The true distance in line 2 is not computable, since Reality is unknown.

It is part of current mathematical research to construct a possibly tight
computable upper bound for this unknown distance;

• The maximal value in line 2 is usually taken over a test subspace of
parameters, whose construction might be delicate;

• In (2), we seek some Smartphone(p) with distance DesiredAccuracy from
Reality(p). If we use Reduced(N, p) with the terminal value N < Nmax
as Smartphone(p), then Algorithm 1 in fact ensures the error bound (2);

• For the computation of Reality(p(n)) (which is called snapshot in RBM)
in line 4 we use the HPC-based supercomputer output Simulation(p).

Why should this work?

After the precomputation of the reduced model in the offline phase using the
above greedy method, one can also precompute several ingredients for the
reduced system, so that this system (the Online Database) can then completely
be stored on the micro-controller. Then, given a new value for the parameter
(for example, current measurements for weather and water), the reduced system
can be solved highly efficiently on the small device.

Of course, one could construct such a reduced system also by other tech-
niques, for example by simplifying physical relevant phenomena or neglecting
certain effects. 6 This, however, would not necessarily yield a certified reduced
simulation. One might also think to simply use the precomputed snapshots as
a database and to use the “closest” parameter constellation in the online phase,
however this is often very inefficient (for reasons of both accuracy and storage).

The question remains, why or under which circumstances this works at all?
One main observation is shown in Figure 2, where the error (the distance between
the true and the reduced solution) is depicted over the dimension n of the reduced

5 A greedy algorithm is one that breaks the problem to be solved into steps (passing over
them via a loop) and chooses the best solution at each step as if that step was the problem to
solve. There are many cases in which a greedy algorithm does not come up with the best
solution to the full problem or with a solution at all. However, in our case it is a suitable
strategy.
6 As in the thrown-ball model above, where the very simple model did not take into account
air resistance and other aspects influencing the ball’s trajectory.
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system (here for the so-called allocation, a major part of the full DP problem).
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Figure 2: Error decay (accuracy
10−3 reached here for
n = 112).

It turns out that for many different real
problems, there is a very fast error decay,
so that a reduced system of very small
dimension suffices to realize the desired
accuracy for different parameters. For
some of such problems, there is a rigorous
mathematical proof of such a fast decay,
for others there is at least experimental
evidence by simulations. Mathematicians
say that the “solution depends smoothly
on the parameter”. It is an open problem
of current research to quantify what kind
of smoothness yields which kind of error
decay.

5 RBMs on smar tphones

We present here some results of the first smartphone implementation of the
Reduced Basis Method, presented in [7]. The code is implemented in the
programming language Java and the online phase is executed on a Nexus One
Android-based Smartphone with a 1GHz processor and 512 MB of memory with
double-precision accuracy. The OpenGL ES Library is invoked for graphical
renderings. Several different parametrized problems (here, parametrized partial
differential equations (PDEs)) 7 are loaded on the smartphone, including linear
two- and three-dimensional problems, and nonlinear problems. Note that
memory restrictions limit both the number of problems we can consider and
the size of each problem.

We present here results of the reduction method on the smartphone de-
scribed above for one particular problem: an acoustic horn, modeled by the
(frequency-domain) Helmholtz PDE. The parameters here are the geometry of
the flare and the frequency of the excitation (incoming pressure wave). For
this problem, N is quite small, N = 53, and hence online response time is
very fast: roughly one or two seconds from specification of the parameters to
completion of the smartphone solution; recall that all calculations are performed
onboard. In Figure 3(a), we show the spatial dependence of the pressure field
for particular parameter values; in Figure 3(b), we show a plot of the modulus

7 Partial differential equations are equations that describe a relation between a function of
several variables and its partial derivatives with respect to these vriables. These can often be
extremely hard to solve and, sometimes, a solution does not exist at all.
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of the reflection coefficient of the horn as a function of the frequency. We em-
phasize that both panels are direct “screen grabs” from the Nexus Smartphone.

(a) (b)

Figure 3: Smartphone simula-
tion for an acoustic
horn.

Figure 3(b) shows Smartphone(p) to-
gether with rigorous lower and up-
per bounds for Simulation(p) based
on a posteriori error estimates 8 for
distance(Simulation(p),Smartphone(p)).
In fact, Smartphone(p) (indicated by the
×’s) is sufficiently accurate that the lower
and upper bounds for Simulation(p) (in-
dicated by two solid lines) essentially
collapse to a single curve, more or less
through the Smartphone(p) “×” marks.

6 Conclusions and out look

Our title, “High Performance Computing
on Smartphones”, is justified because – by
virtue of certification – the results from
the smartphone are in a sense equivalent
to the results we would have obtained
had we directly invoked Simulation(p) on a supercomputer. But of course,
Smartphone(p) is much faster, and more suitable for on-site, real-time, fail-safe
applications.

The Reduced Basis Method was conceived many decades ago and has enjoyed
a renaissance in research and development in the last fifteen years; see [1, 5, 9, 10],
to mention just a few. Many researchers across the world have made important
contributions, as demonstrated by the workshop series www.morepas.org and
recent research articles in [2]. We hope in the future to fully address problems
as ambitious as the Dynamic Positioning grand challenge described in Section 2.

8 These are error estimates derived from experiments using statistical methods.
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Image credi ts

Figure 1 Kindly provided by D. Jürgens, Voith Turbo Schneider Propulsion,
Germany.

Figure 2 From [3], by Karsten Urban and Anke Brandner.

Figure 3 From [7, Figure 1].
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