
Snapshots of modern mathematics
from Oberwolfach

№ 12/2018

Number theory in quantum
comput ing

Sebast ian Schönnenbeck

Algorithms are mathematical procedures developed
to solve a problem. When encoded on a computer,
algorithms must be “translated” to a series of sim-
ple steps, each of which the computer knows how
to do. This task is relatively easy to do on a clas-
sical computer and we witness the benefits of this
success in our everyday life. Quantum mechanics,
the physical theory of the very small, promises to en-
able completely novel architectures of our machines,
which will provide specific tasks with higher comput-
ing power. Translating and implementing algorithms
on quantum computers is hard. However, we will
show that solutions to this problem can be found and
yield surprising applications to number theory.

1 Comput ing

In this section we briefly introduce the notion of computing in general. We then
review classical computing and introduce the reader to quantum computing.
Computing is a vast and fascinating topic which we do not attempt to cover or
introduce here. We point the interested reader to [3].

1

1.1 Classical comput ing

A classical computer (by which we here mean a Turing machine, see [5]) is
a machine that employs the principles of classical physics (in particular the
principles of electrodynamics) 1 to perform operations on numbers (e.g. adding
or multiplying two numbers) much faster than any human can hope to do.

A classical computer stores information in bits. A bit is always in one of two
possible states, it is either "on" or "off" and we think of "on" as a 1 and "off"
as a 0. If our computer can store information using n bits, it can thus be in
any one of 2n possible states (we have two possible choices for each bit). A
modern personal computer, for example, usually has at least a few billion bits
of memory, also known as Giga-bytes. 2

In general, we want our computer not only to store information but also to
process it and to do computations with it. To that end, we think of the two
possible states of a single bit as the two elements of the finite field F2. An
introduction to the concept of field can be found in the box below.

We can then think of the states of our computer, meaning all possible ways to
encode information, as elements of the n-dimensional F2-vector space which we
denote by Fn

2 . A simple way to visualize an element of this set, or a state of the
computer, is the well known “string of bits”. For example, two elements x1 and
x2 of F9

2, which are both nine-dimensional strings of bits, are x1 = 110011010
and x2 = 100000110. Can you see that there are 29 = 512 such different strings,
or elements, of F9

2?
Many of the computations that we can do on the states (strings of bits) of the

computer can be represented by n× n-matrices with elements of F2 (matrices
with 0 or 1 as entries) that operate on a string of bits and map it to another
string of bits. An operation can, in general, map any string of bits, to any other
string of bits. For example, there will be a 9× 9 matrix that maps the string
x1 to the string x2 of the example above.

A simple example is the following. Imagine we have two strings of bits
x1 = 100 and x2 = 001 and we wish to map x1 to x2 using a 3× 3 matrix. Once
one knows how to apply matrices to vectors, it is easy to check that one matrix
M that does the job is

M =

0 0 1
0 0 0
1 0 0

 .

1 Electrodynamics studies all phenomena that involve charged particles, materials and the
electromagnetic field.
2 Information capacity of computers is commonly measured in bytes, which correspond to
eight-bits, see https://en.wikipedia.org/wiki/Byte.

2

In fact, x2 = M x1.

Fields: a brief introduction

Definition
Formally, a field is a set F together with two operations, the operation + called
addition and the operation · called multiplication.
—————————————————————————————————–
Properties of the operations
The operations + and · are required to satisfy the following properties, referred
to as field axioms. In the sequel, a, b, and c are arbitrary elements of F.

i) Associativity of addition and multiplication: a + (b + c) = (a + b) + c and
a · (b · c) = (a · b) · c.

ii) Commutativity of addition and multiplication: a+b = b+a and a ·b = b ·a.
iii) Additive and multiplicative identity: there exist two different elements 0

and 1 in F such that a + 0 = a and a · 1 = a.
iv) Additive inverses: for every a in F, there exists an element in F, denoted

−a, called additive inverse of a, such that a + (−a) = 0.
v) Multiplicative inverses: for every a 6= 0 in F, there exists an element in F,

denoted by a−1, 1/a, or 1
a
, called the multiplicative inverse of a, such that

a · a−1 = 1.
vi) Distributivity of multiplication over addition: a · (b + c) = (a · b) + (a · c).

—————————————————————————————————–
Example: R
As an example, we remind the reader that the set of real numbers R is a
field together with the standard multiplication and addition operators. Each
property above can be independently checked. We leave this as a simple
exercise for the reader.

1.2 Quantum comput ing

A quantum computer (by which we here mean a quantum Turing machine,
see [4]) is a computer that employs properties of small quantum systems,
described by the theory of quantum mechanics, to perform computations. 3

These devices can handle specific problems (for example finding the prime
factors of a given – typically large – number as often needed in encryption)
much better than classical computers, since they behave fundamentally different
from their classical counterparts.

At the moment there is a lot of exciting work going on with a lot of companies
competing in building bigger and better versions of these devices. Most recently

3 Whereas a classical computer is based in classical physics.

3

IBM announced their success in building the largest quantum computer capable
of being programmed to perform arbitrary tasks yet. 4 In addition, the American
company D-Wave is already promoting their quantum computer which is (by
their own accord) two orders of magnitude more powerful than IBM’s, 5 see
Figure 1. However, it should be noted that these devices are single purpose-built
and thus do not quite count as quantum computers in the sense of this snapshot.
Finally, it is not only the private sector who invests in this field. The European
Union financed a quantum technology flagship project with a billion dollars in
2016 6 and similar projects are underway in the US, Canada, and China.

Figure 1: Photograph of a chip constructed by D-Wave Systems Inc., mounted
and wire-bonded in a sample holder. The D-Wave processor is
designed to use 128 superconducting logic elements that exhibit
controllable and tunable coupling to perform operations.

In this snapshot we will not explain the theoretical background of a quantum
computer. Neither will we consider the multitude of problems that arise when
scientists actually try to build one. 7 Instead we want to think about how we
would practically work with a quantum computer if we had one and how we
would handle the problem of telling a quantum computer what to do.

We have already argued that classical computers operate using bits of
information. In a quantum computer the situation is a little more complicated.
These devices no longer store information in bits, but rather use qubits. A qubit
does not always have to be either 0 or 1 but can be in a “combination” of the

4 See, https://www.ibm.com/blogs/research/2017/11/the-future-is-quantum/.
5 This statement can be found at https://www.dwavesys.com/d-wave-two-system.
6 More information to be found at https://www.nature.com/news/
europe-plans-giant-billion-euro-quantum-technologies-project-1.19796.
7 An introduction to both of these topics can be found in [3].

4

https://www.dwavesys.com//
https://www.ibm.com/blogs/research/2017/11/the-future-is-quantum/
https://www.dwavesys.com/d-wave-two-system
https://www.nature.com/news/europe-plans-giant-billion-euro-quantum-technologies-project-1.19796
https://www.nature.com/news/europe-plans-giant-billion-euro-quantum-technologies-project-1.19796

two called a superposition. We can think of such a superposition by employing
vectors. The superposition of two vectors is a (complex) linear combination of
the two vectors. In the same way, we model the superposition of the possible
states 0 and 1 of a classical bit as a qubit, that is, an element of the vector
space C2.

We can denote two elements of C2 using the “bra-ket” notation |0〉 and |1〉. 8

If we choose |0〉 and |1〉 conveniently, we obtain a generic superposition |ψ〉
of the two by |ψ〉 = a |0〉 + b |1〉, where a, b are complex numbers. Therefore,
|ψ〉 ∈ C2 is an arbitrary element of C2. This notation has a simple and intuitive
pictorial representation. We can imagine that |0〉 and |1〉 are the unit vectors in
a two-dimensional plane, where |0〉 is aligned along the x axis and |1〉 along the
y axis. If a and b where real numbers, then |ψ〉 would just represent an arbitrary
vector in the plane, with (signed) length a along the x axis and (signed) length b
along the y axis. Its total length L would be given by the standard Pythagoras
rule L =

√
a2 + b2. In the present case, since a and b are complex, the pictorial

representation needs some work of imagination, but the extension should be
conceptualizable with some training.

Now, if our quantum computer operates with n qubits, its possible states are
the complex linear combinations of the states of a classical computer with n
usual bits. For example, a particular state can be |ψpart.〉 = |x1〉+ i

3 |x2〉, where
each “ket” is labeled by a string of n classical bits and x1 = 00001001011 . . .,
x2 = 1010010101 . . . This leads us to think of these states as elements of the 2n

dimensional C-vector space C2n . In general, we write the generic element |ψ〉 as

|ψ〉 =
∑
m

axm
|xm〉,

where the sum is over all possible strings xm of n bits and the coefficients axm

are complex numbers. In our previous example, we had ax1 = 1 and ax2 = i/3,
while all other axm coefficients were zero.

Computations with these states become matrix multiplication with elements
from C2n×2n . This means that a quantum computation algorithm can be
encoded in 2n × 2n matrix g with complex elements gmp. The algorithm acts
on the state |ψ〉 mapping it to a state |ψ′〉 =

∑
m a′xm

|xm〉 with elements
a′xm

=
∑

p gmp axp
. This compact notation allows us to write |ψ′〉 = g |ψ〉.

Finally, we note that the very nature of a quantum computer restricts us to
matrices g that preserve the length of each vector, so-called unitary matrices.
We denote the set of all unitary matrices by U2n(C). This requirement comes
as a consequence of the probabilistic interpretation of the vectors |Ψ〉 9 .

8 The bra-ket notation was introduced by the great physicist and Nobel Prize laureate P. A.
M. Dirac.
9 Footnote added We require such a vector to have unit length in order to be able to

5

2 Exact synthesis

In this snapshot we focus on one specific problem that we face when working
with a quantum computer. Imagine that we want to run an algorithm on our
(quantum) device, an operation that is implemented by applying a specific
unitary matrix g to the vector |ψ〉 that represents the current state. Our
quantum computer, however, does not a priori know how to apply this operation
(read, matrix). Instead it only knows how to perform a handful of basic
operations that we call g1, g2, g3, I have added a small analogy here. This
problem is equivalent to learning, say, to perform a piece on the flute. It is
virtually impossible to learn the whole piece without knowing the basic moves
and notes. The student (computer) can perform basic notes (operations). The
basic notes (operations) in the right sequence form together the whole piece
(operation g). The composition (list of basic operations) tells the student
(computer) how to practically perform (implement) the piece (operation g).

Therefore, we first need to tell the quantum computer how to build up the
matrix we want to apply from those basic operations it is familiar with. This is
known as the exact synthesis problem and we formally phrase it as follows:

Problem 1 (Exact synthesis) Let G ⊂ U2n(C) be the set of fundamental
operations we can perform on our n-qubit quantum computer (called the gate set
of the quantum computer) and let g ∈ U2n(C) be the matrix we actually want to
apply. 10 Then, exact synthesis is the task of finding fundamental operations
g1, g2, ..., gr ∈ G such that

g = g1 · ... · gr.

In other words we ask for a series of fundamental operations that we can apply
one after the other to achieve the same result as applying g at once.

This can maybe be better understood with our flute student example. Given
a set of basic notes (gates in G) and a flute piece (element g), we ask which
is the sequence, or composition, g1 · ... · gr of notes (the exact synthesis) that
allows us to play the piece. This analogy is quite useful to picture in our
mind the mathematical passages involved. We emphasize that it should not be
taken literally as an exact representation of what happens in an algorithm for a
quantum computer.

interpret the coefficients axm as probabilities. In fact, to require that the vector |Ψ〉 has
unit length is completely equivalent to the requirement that

∑
m
|axm |2 = 1, which is the

standard condition for probabilities of an event. For a discussion on the probabilistic nature
of a wave function see [6]. A Unitary matrix M is defined by the condition M M† = 1 where
1 is the identity matrix. Unitary transformations preserve the unit “length” of the vector
and, therefore, the total probability.
10 The set U2n (C) is the set of 2n × 2n unitary matrices.

6

We now proceed to explain this problem and its implications with an illus-
trative example.
Example 1 Let us assume our 1-qubit quantum computer can perform the
basic operations

g1 :=
(

0 1
−1 0

)
and g2 :=

(
i 0
0 −i

)
.

This means that G = {g1, g2}.
Our aim is to teach the computer how to apply the operation (matrix)

g :=
(
−i 0
0 i

)
.

It is easy to check that one answer to this exact synthesis problem is

g = g1 · g1 · g2.

However, another answer exists 11 and it reads

g = g1 · g2 · g1 · g1 · g1.

Our Example 1 shows that there is usually more than one answer to an exact
synthesis problem. However, not every answer is of the same “quality”. In
fact, we all know that it costs energy to perform any physical operation, such
as lifting a weight or operating a computer at home. The energy that the
computer consumes is predominantly spent for computational tasks, such as
the fundamental operations it needs to perform to produce an image on the
screen, or to save data on the hard drive. It goes without saying that different
operations might cost a different amount of energy. Therefore, we usually aim
to find an answer to our exact synthesis problem that minimizes the energy we
have to use. Concretely, in Example 1 we would choose the first answer over
the second one, since it will for sure employ less energy (The operations in the
first answer all appear in the second one as well. However, the second answer
requires the computer to perform two extra steps. Therefore, more energy).

3 The 1-qubi t case

Let us now see how we can solve our problem in the simplest case imaginable,
namely on a quantum computer that only has one qubit as Example 1 above.
While computations on a classical computer with one bit are not hard to do (we
can only switch the one bit on or off a couple of times), on a quantum computer
it is already not easy to handle one single qubit.

11 Did you find other examples?

7

3.1 Cl i f ford and T -gates

The first question we have to ask ourselves is which is the set of fundamental
operations that our quantum computer should be able to perform. We cannot
arbitrarily put together this set of operations, since we want to choose elementary
operations that can be easily physically built in a real quantum computer.
Therefore, let us take the opposite approach and ask the computer engineers
what fundamental operations they can actually build, and then proceed to find
a way to perform exact synthesis with these operations.

It would lead too far to explain the details here, so we will just explain the
outcome. A good reference would be [2].

The set of gates that we end up with by following this program is called the
Clifford+T gate set and consists of the following gates:

- The two basic gates are the two Clifford gates (or operations) c1 and c2
which read

c1 =
(

0 i
1 0

)
and c2 = 1√

2

(
−i i
1 1

)
.

- It turns out that the two Clifford gates alone are not enough to build a
useful quantum computer. In fact, if you had a lot of time on your hands
and started writing down all possible combinations of c1 and c2 (or, if you
had less time, you could ask a computer to do it for you) you would find
that there are only 192 different matrices that you can find this way. This
is not enough and one way to improve this is to add one more gate to what
your quantum computer can do which is usually called T -gate and reads

T = 1√
2

(
1 + i 0

0
√

2

)
.

The names T -gate and Clifford-gates have historical reasons and moreover
there is no reason one should expect T to behave fundamentally different
from c1 and c2 (in fact, T · T is a Clifford-gate). However, it is possible to
show that it is not possible to write down every possible combination of c1, c2
and T , since it turns out that there are infinite such different combinations
and therefore our quantum computer can now perform infinitely many
different operations.

We will call Clifford gates those operations that our quantum computer can
perform by only using c1 and c2 (possibly multiple times).

With these gates our one-qubit quantum computer can perform infinitely
many different operations. We would of course like to know whether we can
tell by just “looking” at an operation if our quantum computer is capable of
implementing it. In other words we would like to tell from looking at a matrix

8

if the exact synthesis problem has a solution or not. Luckily there is a positive
answer to this question [1]. This is guaranteed by the following theorem.

Theorem 1 Let g be a unitary 2× 2 matrix. A quantum computer equipped
with the Clifford+T gate set can perform g if and only if all entries of g are of
the form

2n · (a1 + a2
√

2 + (b1 + b2
√

2) · i) (1)

with integers a1, a2, b1, b2 and n.

Let us call Clifford+T the set of all matrices g that can be performed
by a quantum computer equipped with the Clifford+T gate set. Theorem 1
guarantees that an operation is in the C+T set precisely if it has the specific
form detailed in (1), it can be obtained by applying the Clifford+T gates in
an appropriate fashion. In the following, we proceed to explain how to solve
exactly the problem of finding the correct sequence of the required fundamental
gates.

3.2 Single qubi t exact synthesis in Cl i f ford+T

Here we solve exact synthesis problems with respect to the Clifford+T gate set.
To this end, we first have to agree how we want to judge the quality of a solution
to the exact synthesis problem (we already saw in a previous example that there
might be plenty of different solutions). It can be shown that in experiments
it is far cheaper to apply a Clifford operator (that is, c1, c2 or any sequence of
finite length containing only c1 and c2) than to apply T . For this reason, we
will judge the quality of a solution to an exact synthesis problem by the number
of times T appears. This is called the T -count of the solution and we aim to
find a solution with minimal T -count. For example, the word c1 · T · c2 · c1 · c2
has T -count one, while the word T · c1 · c2 · T · c2 · T has T -count three.

Now notice that it is pretty easy to do exact synthesis for purely Clifford
operators. We already mentioned that there are only finitely many of these
(192 to be precise) so we can just write down a list of all strings of operators c1
and c2 that will realize one of these 192 Clifford gates and use it as a reference
whenever we need to implement a Clifford gate. From now on, we refer to such
strings of basic gates as “words”. For example, a word can be c1 · c1 · c2 · c1 · c2
or c1 · c1.

If we wanted to do the same for operators that also include T we could start
by writing down all words of T -count one, then all words of T -count two and
so on. This means, that a word would have exactly one T gate, two T gates
and so on. This approach has two major drawbacks. On the one hand, we
would never be able to write down a complete list of such words, since there
are operations with arbitrarily high T -count. On the other hand, even if we

9

settled for only writing down all operations up to a given T -count (say maybe
up to 100 or 1000), we would quickly encounter the problem of being able to
store all these words, that is, the limit of our capacity to store the list in a
“physical” device, such as a notebook or a computer hard-drive. This would
occur since the number of operations with given T -count grows rapidly. For
these two reasons we need a to study the problem at hand using a completely
different approach.

4 Number theory comes to the rescue

This is the point where number theory comes to our aid. Number theory does
not have an obvious connection to quantum computing. However, this field
of mathematics is concerned with sets of matrices that look like those we can
build out of the Clifford+T gate set. 12

The actual algorithm for performing exact synthesis already in the 1-qubit
case requires a background in number theory that we cannot sensibly provide
here. However, it is still possible to present the idea behind the algorithm by
explaining how it works in a very similar, but much “nicer”, situation, where
we do not have to deal with any imaginary numbers or square-roots of 2.

To this end, the analogue of the Clifford-gates g will be all matrices that we
can obtain as combinations of z1 and z2, which have the expression

z1 =
(

0 −1
1 0

)
, z2 =

(
1 1
0 1

)
. Here g =

(
a b
c d

)
. (2)

It turns out that these matrices are easily recognized, since any matrix g can
be written as a word in the gates z1 and z2 if and only if all of a, b, c and d are
integers and the so-called determinant det(g) = ac− bd is equal to 1.

As an analogue for the T -gate gate we take the following three matrices:

t1 =
(

0 1
2

−2 0

)
, t2 =

(
0 2
− 1

2 0

)
, and t3 =

(1
2 − 5

21
2 − 1

2 .

)
(3)

It turns out that also the set of matrices that can be written as words in z1, z2
and t1, t2, t3 is easily recognized and looks very similar to what we saw for
Clifford+T in Theorem 1. In fact the matrix g can be written as such a word if
and only if all of a, b, c and d are integers divided by a power of 2 (so of the
form m

2n with integers m and n) and the determinant det(g) = ac− bd is still
equal to 1.

12 For an introduction to number theory aimed at beginners, see for example A friendly
introduction to number theory by Joseph H. Silverman

10

As for Clifford+T we now ask ourselves how one might actually find such
a word for a given matrix g (ideally using few occurrences of t1, t2 and t3 as
these are our analogues of the T -gate). If all entries are integers it is relatively
easy to write g as a word in z1 and z2. Explanations on how to do this can be
found all over the internet, 13 so we will not explain this step here.

If, on the other hand, at least one of the entries is not an integer, it turns
out that exactly one of t1, t2 and t3 has the property that the maximal power
of 2 that appears in the denominator of the entries of t−1

1 g (or t−1
2 g or t−1

3 g) is
actually smaller than the maximal power of 2 that appears as the denominator
of an entry of g. This observation (which is not at all obvious) leads to the
following relatively straight-forward algorithm.

Algorithm

We want to write g as a word in z1, z2 and t1, t2, t3. We can proceed as follows:
—————————————————————————————————–

1. If all entries of g are integers write g as a word in z1 and z2.
2. If not, find the one matrix among t1, t2, t3 such that the maximal power of

2 appearing in a denominator of the entries of t−1
1 g (or t−1

2 g or t−1
3 g) is

smaller than for g itself.
3. Continue in step 1 with t−1

1 g (or t−1
2 g or t−1

3 g, respectively).

After finitely many steps the maximal power of 2 that actually appears has
to be 20 = 1 (since it gets smaller in every step) so all the entries are now
integers and we can write the resulting matrix as a word in z1 and z2. But
the resulting matrix is just g multiplied with a couple of t−1

1 , t−1
2 and t−1

3 so if
we bring these to the other side of the equation by multiplying with t1, t2 and
t3 we have written g exactly in the way we wanted.

4.1 Exact synthesis: an example

At this point we explain the abstract description above with an illustrative
example.

Example 2 Say we want to apply the above algorithm to

g =
(

0 −4
1
4 − 1

2

)
.

First of all we note that all entries are integers divided by powers of 2 and that
det(g) = 0 · (− 1

2)− 1
4 · (−4) = 1 so we see that this should actually be possible.

13 See for example: http://www.math.uconn.edu/~kconrad/blurbs/grouptheory/SL(2,Z).pdf

11

http://www.math.uconn.edu/~kconrad/blurbs/grouptheory/SL(2,Z).pdf

Also g has entries that are not already integers so we cannot (yet) write g as a
word in z1 and z2.

Hence we are in step 2 of the algorithm. The maximal power of 2 in the
denominator of an entry of g is 4 and we check

t−1
1 g =

(
− 1

8
1
41

2 −9

)
, t−1

2 g =
(
− 1

2 1
1
8 − 9

4

)
, and t−1

3 g =
(1

2 1
0 2

)
.

The maximal power of 2 in the denominator of t−1
3 g is 2 (which is clearly less

than 4) so we continue with t−1
3 g. This matrix still has an entry that is not an

integer so we are again in step 2 of the algorithm and compute:

t−1
1 t−1

3 g =
(

0 −1
1 2

)
, t−1

2 t−1
3 g =

(
0 −4
1
4

1
2

)
, and t−1

3 t−1
3 g =

(
− 1

4
9
2

− 1
4

1
2

)
.

Now the entries of t−1
1 t−1

3 g are actually integers and (applying the algorithm we
looked up) we write

t−1
1 t−1

3 g = z1z2z2.

If we multiply this equation from the left first by t1 and then by t3 we obtain

g = t3t1z1z2z2

so we have actually succeeded in writing the matrix g as a word in z1, z2 and
t1, t2, t3 and in each step we only had to check which denominators appear in
the entries of the matrix.

Since the maximal power of 2 appearing in an entry of the given matrix is
lowered by a factor of 2 in each step of the algorithm we actually know from
the beginning how many steps the algorithm will take. Namely, if this maximal
power is 2n, we will need to take n steps before all entries are integers. Moreover,
the algorithm automatically uses as few instances of t1, t2, t3 as possible which
was another one of our goals. We want to conclude this section by noting that
the same is true for the completely analogous algorithm that solves the actual
exact synthesis problem for Clifford+T .

5 The mult i -qubi t case

In the section above we saw which principle allows us to decompose a 1-qubit
matrix into a suitable combination of basic Clifford gates and T -gates. Even
better, given that the T -gates are “expensive” to perform, we (essentially) saw
how to achieve the desired combination with the minimal number of T -gates
involved.

12

So far, we have discussed the single qubit case alone. However, a quantum
computer that has only a single qubit as a resource is not of much use for our
everyday purposes. Indeed, we would actually like to be able to solve interesting
problems that require the use of a (much) higher number of qubits. Following
the same logic as before, the set of gates that we would like to use will still be
an appropriate Clifford+T set of gates. In particular, it will be a generalization
of the one we used in the 1-qubit case to the n-qubit one.

The whole scheme presented above to characterize the matrices of the 1-qubit
case, see Theorem 1, can be extended in a straightforward fashion to the n-qubit
case. Therefore, it is still quite easy to tell which matrices we can implement on
our quantum computer that operates using n-qubit registers. However, for two
or more qubits the algorithm for exact synthesis sadly does not generalize as
nicely. In particular, if we try to just use its naive generalization it can happen
that we run into an impasse or get stuck in an infinite loop.

While a suitable generalization can still be used to help us solve the exact
synthesis problem, it is significantly harder to do so for more than one qubit.
For this reason, finding solutions with minimal T -count for n qubits is one of
the topics of modern research.

Acknowledgements

Sebastian Schönnenbeck thanks the DFG collaborative research center TRR
195 for financial support.

Image credi ts

Fig. 1 “DWave 128chip.jpg”. Author: D-Wave Systems, Inc. Licensed un-
der Creative Commons Attribution-Share Alike 3.0 via Wikimedia Com-
mons, https://en.wikipedia.org/wiki/Quantum_computing#/media/File:
DWave_128chip.jpg, visited on June 19, 2018.

References

[1] Brett Giles and Peter Selinger, Exact synthesis of multiqubit Clifford+T
circuits, Phys. Rev. A 87 (2013), 032332.

[2] Michael Nielsen and Isaac Chuang, Quantum computation and quantum
information, Cambridge University Press, 2002.

[3] Wikipedia, Quantum computing, https://en.wikipedia.org/wiki/Quantum_
computing, Accessed: 2017-11-04.

13

https://en.wikipedia.org/wiki/Quantum_computing#/media/File:DWave_128chip.jpg
https://en.wikipedia.org/wiki/Quantum_computing#/media/File:DWave_128chip.jpg
https://en.wikipedia.org/wiki/Quantum_computing
https://en.wikipedia.org/wiki/Quantum_computing

[4] , Quantum turing machine, https://en.wikipedia.org/wiki/
Quantum_Turing_machine, Accessed: 2018-06-03.

[5] , Turing machine, https://en.wikipedia.org/wiki/Turing_machine,
Accessed: 2018-06-03.

[6] , Wave function, https://en.wikipedia.org/wiki/Wave_function, Ac-
cessed: 2017-11-08.

14

https://en.wikipedia.org/wiki/Quantum_Turing_machine
https://en.wikipedia.org/wiki/Quantum_Turing_machine
https://en.wikipedia.org/wiki/Turing_machine
https://en.wikipedia.org/wiki/Wave_function

Sebast ian Schönnenbeck is a
postdoctoral researcher at RWTH Aachen
Universi ty.

Mathematical subjects
Algebra and Number Theory

Connect ions to other f ie lds
Computer Science, Engineer ing and
Technology, Physics

License
Creat ive Commons BY-SA 4.0

DOI
10.14760/SNAP-2018-012-EN

Snapshots of modern mathematics from Oberwolfach provide exciting insights into
current mathematical research. They are written by participants in the scientific
program of the Mathematisches Forschungsinstitut Oberwolfach (MFO). The
snapshot project is designed to promote the understanding and appreciation of
modern mathematics and mathematical research in the interested public worldwide.
All snapshots are published in cooperation with the IMAGINARY platform and
can be found on www.imaginary.org/snapshots and on www.mfo.de/snapshots.

Junior Edi tor
David Edward Bruschi
junior- edi tors@mfo.de

Senior Edi tor
Car la Cederbaum
senior- edi tor@mfo.de

Mathematisches Forschungsinst i tut
Oberwolfach gGmbH
Schwarzwaldstr. 9 –11
77709 Oberwolfach
Germany

Director
Gerhard Huisken

http://creativecommons.org/licenses/by-sa/4.0/
http://dx.doi.org/10.14760/SNAP-2018-012-EN
http://www.imaginary.org/snapshots
http://www.mfo.de/snapshots
mailto:junior-editors@mfo.de
mailto:senior-editor@mfo.de

	Number theory in quantum computing
	Computing
	Classical computing
	Quantum computing

	Exact synthesis
	The 1-qubit case
	Clifford and T-gates
	Single qubit exact synthesis in Clifford+T

	Number theory comes to the rescue
	Exact synthesis: an example

	The multi-qubit case

