Polyominoes on Twisted Cylinders

Gill Barequet
Center for Geometric Computing
Dept. of Computer Science
The Technion-Israel Institute of Technology
Haifa 32000, Israel
barequet@cs.technion.ac.il

Mira Shalah
Center for Geometric Computing
Dept. of Computer Science
The Technion-Israel Institute of Technology
Haifa 32000, Israel
mshalah@cs.technion.ac.il

Abstract

In this video we show how to enumerate polyominoes on twisted cylinders, and explain how to use them for setting lower bounds on the asymptotic growth rate of polyominoes in the plane.

Categories and Subject Descriptors

G.2.1 [Mathematics of Computing]: Discrete Mathe-matics-Combinatorics

General Terms

Algorithms

Keywords

Polyominoes, polycubes

1. INTRODUCTION

A polyomino of size n is an edge-connected set of n cells on the square lattice \mathbb{Z}^{2}. In statistical physics, polyominoes and their higher-dimensional generalizations (polycubes) play an important role in computing the mean cluster density in percolation processes, such as fluid flow in random media [3], and in modeling the collapse of branched polymer molecules in dilute solution [9]. Two fixed polyominoes are considered distinct if they differ in shape or orientation. Figure 1 shows all the fixed polyominoes of sizes two, three, and four. The number of fixed polyominoes of size n is usually denoted by $A(n)$. There are two long-standing open problems related to the study of polyominoes.

1. The enumeration of polyominoes, that is, finding a formula for $A(n)$ or computing $A(n)$ for specific values of n; and
2. Computing the quantity $\lim _{n \rightarrow \infty} A(n+1) / A(n)$, the asymptotic growth rate of polyominoes (also known as "Klarner's constant").

To date, no formula is known for $A(n)$. The best known method (in terms of running time) for counting fixed polyominoes is a transfer-matrix algorithm suggested by Jensen in 2001. By running a parallel version of his algorithm, Jensen [5] computed $A(n)$ up to $n=56$.

(a) Dominoes

(c) Tetrominoes

Figure 1: All fixed dominoes, triominoes, and tetrominoes in the plane.

Klarner [6] showed in a seminal work in 1967 that the limit $\lambda:=\lim _{n \rightarrow \infty} \sqrt[n]{A(n)}$ exists. Only three decades later did Madras [8] show that $\lim _{n \rightarrow \infty} A(n+1) / A(n)$ also exists and, hence, is equal to λ. At the present time not even a single significant decimal digit of λ is known. The best-known lower [2] and upper [7] bounds on λ are 3.9801 and 4.6496, respectively. It is generally assumed (see, e.g., [4]), as a conclusion from numerical methods applied to the known values of $A(n)$, that $\lambda \approx 4.06 \pm 0.02$. Jensen [5] refined this analysis, estimating λ at 4.0625696 ± 0.0000005.

2. TWISTED CYLINDERS

Twisted cylinders were introduced in the context of polyominoes in [2]. For a fixed natural number w, the twisted cylinder of width (or perimeter) w is the surface obtained from the Euclidean plane by identifying all pairs of points of the form $(x, y),(x-k w, y+k)$, for $k \in \mathbb{Z}$. Figure 2 shows a twisted cylinder of width 3 and a polyomino of size $9 \mathrm{em}-$ bedded on it.

In [2], twisted cylinders were used in order to set a lower bound on λ. It was shown that for any $w \geq 1$, the constant λ_{w}, the asymptotic growth rate of polyominoes on a twisted cylinder of width w, is a lower bound on λ. It was also shown that the sequence $\left(\lambda_{w}\right)$ is monotone increasing. Elements of the sequence were computed up to $\lambda_{22}=3.9801 \ldots$, setting this bound on $\lambda .{ }^{1}$ It was also proven [1] that the sequence $\left(\lambda_{w}\right)$ converges to λ.

[^0]

Figure 3: Snapshots from the video.
[2] G. Barequet, M. Moffie, A. Ribó, and G. Rote, Counting polyominoes on twisted cylinders, Integers: Electronic J. of Combinatorial Number Theory, 6 (2006), \#A22, 37 pp .
[3] S.R. Broadbent and J.M. Hammersley, Percolation processes: I. Crystals and mazes, Proc. Cambridge Philosophical Society, 53 (1957), 629-641.
[4] D.S. Gaunt, M.F. Sykes, and H. Ruskin, Percolation processes in d-dimensions, J. of Physics A: Mathematical and General, 9 (1976), 1899-1911.
[5] I. Jensen, Counting polyominoes: A parallel implementation for cluster computing, Proc. Int. Conf. on Comp. Science, part III, Melbourne, Australia and St. Petersburg, Russia, Lecture Notes in Computer Science, 2659, Springer, 203-212, June 2003.
[6] D.A. Klarner, Cell growth problems, Canadian J. of Mathematics, 19 (1967), 851-863.
[7] D.A. Klarner and R.L. Rivest, A procedure for improving the upper bound for the number of n-ominoes, Canadian J. of Mathematics, 25 (1973), 585-602.
[8] N. Madras, A pattern theorem for lattice clusters, Annals of Combinatorics, 3 (1999), 357-384.
[9] P.J. Peard and D.S. Gaunt, $1 / d$-expansions for the free energy of lattice animal models of a self-interacting branched polymer, J. of Physics A: Mathematical and General, 28 (1995), 6109-6124.

[^0]: ${ }^{1}$ Recently, we computed $\lambda_{23}=3.9856 \ldots$, thereby improved the lower bound on λ.

