1. Introduction

In 1973, R. Penrose found a quasiperiodic set of tiles with tenfold rotational symmetry [1].
n 1981, N. G. de Bruijn developed a way to generate quasiperiodicity by projection [2].

One year later, inspired by the work of his teacher de Bruijn, F. P. M. Beenker proposed a
tiling of squares and rhombs with octagonal rotational symmetry (3], called the Ammann-
Beenker (AB) tiling, due to the equivalent tiling found by Robert Ammann six years before.

In 1984, D. Shechtman et al. described materials inducing diffraction patterns with tenfold
rotational symmetry [4] which seemed to be a realization of the above-mentioned works.

In 1987 and 1988, the lst of these new materials, now called quasicrystals, was extended by
some examples with eightfold rotational symmetry, discovered by Wang, Chen and Kuo.

An alternative way to generate tilings with perfect order is the substitution method [1, 3],
which decomposes the tiles into definite arrangements of smaller tiles. But substitution, as
well as projection, is a global method and not applicable for modelling quasicrystal growth.
The decagonal covering cluster, proposed by P. Gummelt [5) in 1996, and the octagonal
covering cluster (here denoted by ), proposed by F. Gahler and S. I. Ben Abraham (6] in
1999, were important innovations in tiling theory. However, the local covering rules of the
cluster cells lead inevitably to missmatches as well as the local matching rules of the tiles.
The decagonal quasiperiodic succession algorithm, published in 2007 by U. Gaenshirt & M
Willsch [7), generates a flawless Penrose cartwheel-type tiling [5, 7) although it acts locally.
The octagonal type of succession algorithm which is presented here generates a flawless
octagonal AB-substitution tiling resp. a Gahler cluster covering, acting locally just as well.

2. The successive generation of a quasiperiodic 1D-grid I'*
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The octagonal type of the quasiperiodic succession algorithm as a recursive formula set
which generates the growth of a flawless Ammann-Beenker substitution tiling
solely using local information from neighbouring cluster cells

Uli Gaenshirt

WartburgstraBe 2, 90491 Nuremberg, Germany

4. The seven neighbour transformations /; of the AB-tiling

Because of K= K 32, and due to the equivalent relations between K?, @ and 2, the kites K
in figure 2b represent a downscaled substitution-tiling. Each kite K* s invariably surrounded
by three kites. The six neighbour types (figure 3) can be reduced to seven transformations /ix
© Ui, b5, I, Iy, Iy, b, e}, as imaged in figure 4 (the inverses " are denoted by /t).
From the scaling in figure 1c results an edge length a; = \2 of the Ammann-Beenker tiles.
The distances between the cell centers can be calculated to: /=22 cos n/8 and s .
Withz € @, i*=~1and E* — E* the transformations /i can be written as follows:
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6. The iperiodic ion algorithm

The recursive formula set (table 1) consists on one /- and seven /i;-modules. A verified /-
transformation is named . A cell with a verified path from the start-cell Qy is termed Q...
The four values Xy..., in the h,-module, with x € {a, b, ¢, d}, are the values X%, of a
verified predecessor cell. The numbers k of x”"%, . are renamed to the numbers  of xy...
The iy-modules contain four correlation equations each (see derivation for /; in figure Sb).
The ternary relations restrict the allowed values x," and lead to the following truth values r:
[ et =0 =T]  [xo.metx™]=[t0..0)=F]= [¢(Q0..) = F] forbidden

[t =T, t®o.w)=T, t(co.m (o) = T|=[t(Qu..ct) = T| verified
Only values of a verified cell may be inserted into the /t,-module of a successor formula set.
Table 1 shows the formula set with the exemplarily inserted start-values of the start-cell Qy:
o= 107", lim n — oo (The infinitesimal start-values prohibit ambiguity).
The nelghbour cels ofthe start cll Qs are calculated to @, Qot and G, I accordance to
the substitution structure (Compare the three blue kites K in the center part of figure 2b).

Table 1. The h,-module and the seven -modules with the inserted values uy of the start-cell Q.
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Figure 1. Generation of a 10-grid I": (a) cut & project, (b) inflation & subdivision, (c) 1D-succession.

In figure 1 three different methods are adjusted to generate a 1D Ammann bar grid I'

In the cut & project scheme (figure 1a) the points of a sloped periodic lattice are projected
from the inside of a horizontal stripe-shaped window W onto a horizontal line.

The substitution method combines inflation & subdivision (figure 1b). The grid intervals L
and S (L/S=12) are firstly inflated (enlarged with factor ) to L*- and S"intervals and then
subdivided into the sequences S-L-S-L-S-L-S resp. S-L-S-L-$ (silver mean %= 1+12),

In contrast to the latter global systems, the 1D-succession (figure 2c) acts locally. The cell
grid € of a cell 0" writes: U-S-L-S-L-S-(g-line)-S-L-S-L-S, with U = [L+S]. The twin-scale
I** consists on two single scales I'* and I'”. Their value-lines p are joined by a sliding ruler.
Its length, L™, is the average of the g-line grid intervals L and S, with respect to the ratio
V2:1 of their length and 1:\2 of their frequency rate in an infinitely expanded grid I,
The cell grids ™€ and the twin-scales I**allow two kinds of cell correlation with different
results for the value x"** of a successor cell relative to the value x"*/of a predecessor cell

Sttype: [\ ="+ 7] Lttype: [\ =x""+37—1]  condition: [0<x™<1]

The value condition always restricts the two possibilities of cell correlation to a single one.
The created sequence is in accordance to the grid I'* generated by the global systems.

3. Construction of the Ammann bar 8-grid I and cell grid T'?

Figure 2. (a) Gahler-octagon £2 with Ammann bar 8-grid I" and kite K". (b) Octagonal cell grid I,

The grey marked octagon in the center of figure 2a is @ Gahler-octagon € (6], a unit cel of
the quasiperiodic Ammann-Beenker tiling. The superposed Ammann lines 4", 4", 4%,

enclose the orange kite K, have an equivalent relation to the Gahler-octagon 2.

In accordance to the 1D-cell Q" (see figure 1c) two bar sequences S-L-S-L-S are added on
both sides of the Ammann lines 4", ¢", 4", 4" and generate the Ammann bar 8-grid I

Figure 2b shows the elementary cell grid I'? of a cluster cell Q. It consists of the grid I'in the
outlines of figure 1a and of the octagon lines. The four lines inside the octagon which occupy
alternately positions at the inner resp. outer borders of the white bars are not part of ¢!

Figure 4. The seven transformations /i , represented by £2. (a) hy, (b) 3, s, () hy, by, () by, by

5. The cluster cell Q and its correlations with a cell /1, (Q)

The cell grid I is a superposition of four 1D-cell grids ™%, ™€, T, 1€ which coincide
with the arrangement of the Ammann lines ¢*, ¢".¢%, ¢" in a Gahler -octagon 2 (figure 2a, b).
Afixation of four twin-scales I*%, 1", 1, l“mgure 1c) on the cellgrid ' creates the cluster
cell Q (figure 5a) which is consequently 3 superposition of four 10-cells @, 7

Thus the cluster cells @ generate four 1D-grids I, I, I', I'" which add up to the gnd T

The scale value implications, pictured in the center of figure 5a (formulae at the end of text),
are derived from a globally generated grid I'. They finally enable unambiguous calculations.
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Figure 5. (a) Cluster cell Q with four twin-scales I (b) Twin-scale correlation of the cells @ and 1(Q)

For lucidity the correlating twin-scales I"%, 1%, 1Y, 1'* of Q and /1;(Q) in figure 5b are directly
fixed on the equivalent Géhler-octagons £2 and /i(€2). The grey bars, connecting the scales of
both cells, represent the scope of the permitted scale values of the transformation /z.

The dotted p-lines (compare figure 1c) represent the value correlation of @y and Qn =/ (Qv).
The four-line table at the top contains the correlation equations of the transformation /.
The value restrictions o, . y therein are derived from the first two scale value implications:

[(<c=>a"<a] [a<i’=c<n’] [<b=a"<d]  [d<a’=b<)’]
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7. Application and outlook

Figure 6 shows a path of 33 A-transformations,

calculated by succession algorithm. The end-cell

correlates with the start-cell 2, in the center of

the substitution tiling, here limited by 2y 3.

The path is denoted by the index of the end-cell

0 . The

calculated cells of the path correlate exactly with

the globally generated substitution tiling.

The succession algorithm enables new methods

of modelling quasicrystal growth. For instance it Figure 6. Successively calculated path
should be possible to create filigree shapes by and substitution structure
marginal restrictions of the permitted values.

An interpretation with respect to real quasicrystal growth would be the goal, as well as the
development of dodecagonal or icosahedral version types of the quasiperiodic succession
algorithm, built up comparably to the presented octagonal and decagonal types.




