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1. Introduction 
 

In the 16th century Europe the geometry of regular polyhedra was a matter of particular interest [1]. The 
drawings of the Renaissance artist Leonardo da Vinci (1452 – 1519), published in 1509 in Luca Pacioli’s book 
De Divina Proportione [2], had far-ranging influence about art and philosophy. In 1568, the goldsmith Wenzel 
Jamnitzer (1508 – 1585) from German Nuremberg presented in his work Perspectiva Corporum Regularium [3] 
phantastic, polyhedral variations, derivated from perspective delineations of the fife Platonic solids. 

The faces of the Platonic solids are regular polygons. Each solid has congruent 
faces and identical corners. In his first book Mysterium Cosmographicum [4], 
published in 1596, the German astronomer and mathematician Johannes Kepler 
(1571 – 1630) postulated a direct correlation between the planetary orbits and the 
circumscribed and inscribed spheres of the Platonic solids. Figure 1 shows the 
inner part of his cosmological model, with the sun in the center of the four 
concentric spheres of Mercury, Venus, Earth, and Mars, and with the three 
intermediate Platonic solids, octahedron, icosahedron, and dodecahedron. 

In his main work Harmonices Mundi [5], published in 1619, Kepler revised his 
early ideas, due to the fact that both his cosmological measurement and his 
polyhedral calculations didn’t exactly confirm this model. He remarked that it 
probably looks too simple to be the work of the artificer of the universe. 
 

 
2. Measures and ratios of the Platonic solids, tetrahedron, cube, and octahedron 
 
 In book II of his work Harmonices Mundi [5] Kepler determined the regular polyhedra systematicly from a 
strong mathematical point of view. In book V he investigated the relationships of the Platonic solids among 
themselves. These correlations are important to establish a complex understanding of the regular polyhedra. 
 

Figure 2.  (a – c) Woodcuts from Harmonicis Lib. V, Cap. I. (a) Tetrahedron ACDE inscribed in a cube. (b) Octahedron 
inscribed in the dual cube. (c) Tetrahedron FGHJ inscribed in the self-dual tetrahedron ACDE (the corner E is hidden behind 
the inscribed tetrahedron FGHJ). (d) Equilateral triangular face ACD of the tetrahedron ACDE. The small highlighted 
equilateral triangles clarify the 3:1 ratio of CK and FK . (e) Unit cube with face diagonal √2 and space diagonal √3.  
 
  

Kepler was aware that the volume of the regular tetrahedron ACDE in figure 2a is one third of the volume of 
the cube, spanned by BA, BC, and BD, because the irregular tetrahedron ACDB has half the volume of ACDE 
(The ratio of their volumes depends from the ratio of their heights about the face ACD, which is as 1 to 2).  

With regard to figure 2b he comments, that the octahedron has the sixth volume of the circumscribed dual 
cube, because the octahedron has half the volume of the tetrahedron ACDE (Please note that an octahedron is a 
tetrahedron less four small copies from itself with half the edge length:  Voct = Vtet – 4 (V tet / 8) = 0.5 Vtet ). 
 Relating to the tetrahedron ACDE in figure 2c he specified that the ratio of the radii of the circumscribed 
sphere to that inscribed in it is as 100000 to 33333 (Compare figure 2d: The geometry inserted into the face 
ACD facilitates to understand, that the ratio of the heights of the tetrahedra FGHJ and ACDE is as 1 to 3). 
 The Pythagorean theorem applied to the triangles in figure 2e reads: 12 + 12 = (√2)2 and 12 + (√2)2 = (√3)2. 
That is why the ratio of the radii of the circumscribed sphere of the cube to that inscribed in it is as √3 to 1. 

Kepler specified this ratio as 100000 to 57735. The calculator accordingly confirms: 1/√3 = 0.577350269… . 
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3. The reconstructed calculation of the circumscribed and inscribed spheres of the dodecahedron  
 
 In figure 3a, Kepler demonstrates how to subdivide a dodecahedron into a central cube and six roof-shaped 
trapezohedrons. One of them, with the originally marked corners, A, B, C, D, and E, he seperately drawed in. 

The denotations, T, P, G, F, Q and J, are supplementary added to the identifications of the original woodcut. 
The point Q bisects the frontal edge of the dodecahedron, the points T, P, G, and F represent a mirror line of the 
regular pentagonal face ABCEF which is shown in figure 3b in a larger size. 

The points T, F, and Q define an intersecting plane which divides the dodecahedron in two mirror-inverted 
parts and gives the image area in figure 3c. Due to the fact that the dodecahedron center, M , the face center, P, 
and the dodecahedron corner, F, are elements of this image area, the representation of the circumscribed and 
inscribed radii is undistorted. The points E, D, J, and A, which define the inscribed cube in figure 3a, are written 
in parentheses because they are arranged in front of the image area, respectively behind it. 

Although Kepler didn’t present a calculation of the dodecahedron spheres, Sin  
 dod and Scir 

 dod, he specified the 
ratio of their radii, r cir 

 dod/r in  
 dod, as 100000 to 79465. This result is obviously derived from a precise calculation. 

In general, Kepler’s calculations were written in prose, as usual in the late Renaissance. He mainly used the 
theorem of Pythagoras (570 – 495 BC), the rule of similar triangles and the rule of proportion.  

For the reconstruction of his calculations here the two-point notation AB is used for both absolute value and 
straight line segment, in the same way as Kepler usually did. I.e., AB has the same (positive) value as BA.  

For practical reasons the slash is used evenhandedly for ratios and divisions, and the square root, √x, is 
denoted in the exponential form, x 0.5, and the reciprocal value, 1/x, in the exponential form, x –1. 

 

Figure 3. (a) Woodcut of a dodecahedron from Harmonicis Lib. V, Cap. I. (b) Regular pentagonal face ABCEF of Kepler’s 
dodecahedron. The diagonal AE is an edge of the dotted outlined cube AEDJ… in the original woodcut. (c) Intersecting 
plane of the dodecahedron shown in figure 3a, seen from the right hand side, and defined by the points, T, F, and Q. 
 
 

In figure 3b, the point H denotes the intersection point of the diagonals AE and CF of the regular pentagon 
ABCEF, dividing the diagonal CF into CH and HF. The ratio CH/HF  is the golden ratio (lat. proportio divina), 
defined by the equation CH/HF = CF/CH . Today we commonly denote the resulting value by the greek letter, τ, 
with τ = 0.5 (5 0.5 + 1) = 1.61803398… . Kepler knew how to calculate τ  with equal accuracy!      

In figure 3b the rule of similar triangles leads from CH/HF  = τ  to TG/GF = τ, and furthermore, in figure 3c, 
from TG/GF = τ  to ML/LQ  = τ  and lastly to MK/KT  = τ , due to MQ = MT and ML = MK . In accordance to 
the previous definition of the golden ratio follows MK/KT  = MT/MK = τ. 

The rectangular triangles GKT  and MPT  are similar, due to their identical angles in T, although they are 
mirror-inverted. The rule of similar triangles leads to MP/MT =  GK/GT , respectively to MP = (GK/GT ) MT .  

With GT = (GK  2 + KT  2 ) 0.5 = (12 + τ –2 ) 0.5 GK , and with MT = τ MK = τ GK , results:  
r in  

 dod = MP = (GK/GT ) MT = (1 / (12 + τ –2 ) 0.5 ) τ GK = 1.376381920 GK, and furthermore: 
r cir 

 dod = MF = (MQ  2 + QF 2 ) 0.5 = ( τ 2 + τ –2 ) 0.5 GK = 3 0.5 GK = 1.732050808 GK (note: MF = MA undistorted).  
The ratio of the radii of the inscribed to the circumscribed sphere is:  r in  

 dod/r cir 
 dod = 0.794654472… .  

This reconstructed calculation confirms exactly the result of Kepler,  r cir 
 dod/r in  

 dod, as 100000 to 79465.  
 
 



 Calculation and imagination in the geometric work of Johannes Kepler 
 
 
 
4. The reconstructed calculation of the spheres of the small stellated dodecahedron 

 
The first known realisation of the small stellated dodecahedron, in the following simply called the star, is a 

marmor mosaic in the Basilica di San Marco in Venice from Paolo Uccello (1397 – 1475). Today the star is 
called a Kepler-Poinsot polyhedron. The star doesn’t bear Kepler’s name because of his famous woodcut shown 
in figure 4a, but rather in that he specified some exact measures of the star. He considered the inscribed sphere as 
the greatest possible one, and not, as we do today, as that one which is limited by the interpenetrating planes. 
This view is proved by the fact that Kepler marked the relating osculation points of the greatest inscribed sphere 
with the character O. The points O are the half-dividing points of the concave edges of the star respectively of 
the edges of the dodecahedron which is hidden inside the star (see figure 4a). 

P and P’ are corners of the star, i.e. the osculation points with its circumscribed sphere. They correlate to the 
corners of an icosahedron, which is the dual solid to a dodecahedron as shown in figure 4c. Kepler wrote in the 
original latin text [5]: ‘…in stella, ut 100000 ad 52573, dimidium latus Icosaëdri, seu dimidium distantiæ 
duorum radiorum’. I.e., Kepler calculated the ratio of the radii of the circumscribing sphere of the star to that 
inscribed in it as 100000 to 52573. Furthermore he argues that the radius of the inscribed sphere is half the 
distance between two corners P and P’ of the star respectively half the edge length of a relating icosahedron.  

     
 

Figure 4. (a) Woodcut of the small stellated dodecahedron from Harmonicis Lib. V, Cap. I. (b) Intersecting plane defined by 
the points, P, O, and P’, seen from the right hand side of the star in figure 4a. The geometry of the points P, O, P’, M , K , T, 
and G, is equivalent to figure 3c, counterclockwise rotated about M with the angle QMP. (c) This original woodcut shows 
the duality of a dodecahedron to an icosahedron. The view is the same than in figure 4a, with P in the image center. 
 
 

For a proof that the radius r in  
 star is equal to PP’/2 we have to show that MO  is equal to PN (see figure 4b). 

With respect to the dotted outlined square in figure 3c it can be shown that the legs of the grey marked, right-
angled triangle GKT  have the ratio GK/KT = τ, by reason of GK = MK and MK/KT = τ. The similarity of the 
triangles GKT  and PNT in figure 4b leads to the ratio PN/NT = τ  and equally to PN/NO = τ, because TP and 
P’O are parallel. PN/NO = τ  implies (PN+NO)/PN = τ, in accordance to the definition of the golden ratio. 

The similarity of the triangle PNT to the triangle MNP involves MN/PN = τ. The substitution of MN with 
MO+ON  leads to (MO+ON)/PN = τ. 

The equalisation of  (MO+ON)/PN = τ  and (PN+NO)/PN = τ  lastly gives MO = PN, q.e.d.  
The radii are:  r in  

 star = MO  and  r cir 
 star = MP = (MN  2 + PN 2 ) 0.5  = ((τ MO) 2 + MO 2 ) 0.5  = (τ 2 + 1) 0.5 MO 

Consequently the ratio of the star radii amounts to:  r in  
 star/r cir 

 star = 1 / (τ 2 + 1) 0.5 = 0.525731112… . 
In turn the calculation confirms the result of Kepler, with r cir 

 star/r in  
 star, as 100000 to 52573. 
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5. Kepler’s dialectic understanding of artistic imagination and mathematical verification 
 

In the Mysterium Cosmographicum [4] from 1596, Kepler illustrated the concentric spheres of the planets 
with a specific thickness (compare figure 1), to give space for the excentricity of the respective planetary orbits. 
The idea that the distances between the spheres of the planets are determined by the circumscribed and inscribed 
spheres of the five Platonic solids was probably inspired by the work of artists. The detail from Lorenz Stoer’s  
woodcut [6] in figure 5 shows an octahedron inside a perforated, enveloping sphere. 

Since 1600 Kepler lived in Prague, and worked as an assistant of the well-
known Danish astronomer Tycho Brahe. In the years after Brahe’s death in 1602, 
Kepler discovered that the excentric orbits of the planets have elliptic shapes.  

In 1609, in his work Astronomia nova [7], he published his first two laws 
about planetary motion on the base of Brahe’s famous astronomical data. 

Both, Brahe’s data and Kepler’s increasing numeracy skills, let him revise his 
early model from 1596, but without completely discarding it. In the fifth book of 
his main work Harmonices Mundi [5], published in 1619, he remarked that there 
must act polymorphic geometrical figures beyond the five Platonic solids. He 
found out that the ratio of the distance Venus-Sun to the shortest distance Mars-
Sun correlates to the ratio r in  

 star/r cir 
 star (figure 4b), so that the intermediate sphere of 

the Earth would be interpenetrated by the twelve spikes of the star. Possibly, this 
idea was directly inspired by the illustration of Lorenz Stoer! 
 

 
6. The relevance of Kepler’s work for the contemporary empirical science 
 
Although Johannes Kepler was a religious man, he was one of the first who delivered the natural philosophy 
from the stranglehold of the ecclesiastic dogma, placing direct observation right at the top, in accordance to our 

present-day understanding of empirical science. 
 On the one hand we admire the mathematical trueness of Kepler’s three laws 
about planetary motion, on the other hand we are temted to belittle his early 
cosmological model. However, this artistical model was, despite its falsity, the 
impetus of Kepler’s epoch-making astronomical work. 
 Today, we are challenged to imagine objects of the subatomic space. In that 
we cannot observe them directly we have to use simplifying models too. Figure 6 
shows, in which way the 110 electrons of a synthesized Darmstadtium atom are 
distributed about seven shells in accordance to the nuclear shell model. 
 But just because it seems to be impossible to find a real representation of 
atomic substantiality, we should be aware that artistic imagination could be a 
helpful catalyst in an effort to transform measured data by complex calculations 
into a deeper insight.    
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