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1. Introduction

In the 16th century Europe the geometry of regplaliyhedra was a matter of particular interest e
drawings of the Renaissance artist Leonardo daiVi#t52— 1519), published in 1509 in Luca Pacioli's book
De Divina Proportiond?], had far-ranging influence about art and philosophyl568, the goldsmith Wenzel
Jamnitzer (1508 1585) from German Nuremberg presented in his viRakspectiva Corporum RegulariufB]
phantastic, polyhedral variations, derivated fragnspective delineations of the fife Platonic salids

The faces of the Platonic solids are regular patgg&ach solid has congruent
faces and identical corners. In his first badlsterium Cosmographicur#],
published in 1596, the German astronomer and mattieian Johannes Kepler
(1571-1630) postulated a direct correlation between thegtary orbits and the
circumscribed and inscribed spheres of the Plateals. Figure 1 shows the
inner part of his cosmological model, with the santhe center of the four
concentric spheres of Mercury, Venus, Earth, andsMand with the three
intermediate Platonic solids, octahedron, icosatredand dodecahedron.

In his main workHarmonices Mundj5], published in 1619, Kepler revised his
early ideas, due to the fact that both his cosnmicidgmeasurement and his
Figure 1. Inner section from polyhedral calculations didn’t exactly confirm thisodel. He remarked that it
Mysterium Cosmographicum ~ probably looks too simple to be the work of théfigdr of the universe.

2. Measures and ratios of the Platonic solids, tethedron, cube, and octahedron

In book Il of his workHarmonices Mund[5] Kepler determined the regular polyhedra systecty from a
strong mathematical point of view. In book V hedstigated the relationships of the Platonic sofid®ng
themselves. These correlations are important abésh a complex understanding of the regular pedyéa.
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Figure 2. (a — c) Woodcuts frortarmonicis Lib. V, Cap. I(a) Tetrahedro®MCDE inscribed in a cube. (b) Octahedron
inscribed in the dual cube. (c) TetrahedrgdHJ inscribed in the self-dual tetrahedrA@DE (the corneiE is hidden behind
the inscribed tetrahedroRGHJ). (d) Equilateral triangular facACD of the tetrahedro®CDE. The small highlighted
equilateral triangles clarify ther1 ratio of CK andFK . (e) Unit cube with face diagonsP and space diagonaB.

Kepler was aware that the volume of the regulaatetdronACDE in figure 2a is one third of the volume of
the cube, spanned IBA, BC, andBD, because the irregular tetrahed®@DB has half the volumef ACDE
(The ratio of their volumes depends from the rafitheir heights about the faé&CD, whichis aslto 2).

With regard to figure 2b he comments, that the lmediaon has the sixth volume of the circumscribedl du
cube, because the octahedron has half the volurtteedétrahedroACDE (Please note that an octahedron is a
tetrahedron less four small copies from itself viittf the edge lengthV o = Vig — 4 (Vi / 8) = 0.5 Vg ).

Relating to the tetrahedrd®CDE in figure 2¢ he specified that the ratio of thdiraf the circumscribed
sphere to that inscribed in it is 480000to 33333 (Compare figure 2d: The geometry inserted into fiwe
ACD facilitates to understand, that the ratio of thights of the tetrahedfaGHJ andACDE is aslto 3).

The Pythagorean theorem applied to the triangidigire 2e readst? + 1= (V2)? and 12 + (N2)* = (V3)2
That is why the ratio of the radii of the circunibed sphere of the cube to that inscribed in étsis3 to 1.

Kepler specified this ratio @00000to 57735 The calculator accordingly confirmsi'3 = 0,.57738269....
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3. The reconstructed calculation of the circumscribd and inscribed spheres of the dodecahedron

In figure 3a, Kepler demonstrates how to subdiddgodecahedron into a central cube and six rogiesha
trapezohedrons. One of them, with the originallyked cornersA, B, C, D, andE, he seperately drawed in.

The denotationsT, P, G, F, Q andJ, are supplementary added to the identificationheforiginal woodcut.
The pointQ bisects the frontal edge of the dodecahedrompdiv@sT, P, G, andF represent a mirror line of the
regular pentagonal fad&BCEF which is shown in figure 3b in a larger size.

The pointsT, F, andQ define an intersecting plane which divides theet@thedron in two mirror-inverted
parts and gives the image area in figure 3c. Dubddact that the dodecahedron centér,the face centeR,
and the dodecahedron cornkr,are elements of this image area, the representafi the circumscribed and
inscribed radii is undistorted. The poifisD, J, andA, which define the inscribed cube in figure 8ee written
in parentheses because they are arranged in frtimt dnage area, respectivdighind it.

Although Kepler didn't present a calculation of ttledecahedron sphereg® and S, he specified the

ratio of their radiiy &% &9 as100000to 79465 This result is obviously derived from a precisécalation.

In general, Kepler's calculations were written moge, as usual in the late Renaissance. He maselg the
theorem of Pythagoras (573495 BC), the rule of similar triangles and theeraf proportion.

For the reconstruction of his calculations heretti@-point notationAB is used for both absolute value and
straight line segment, in the same way as Kepleaallysdid. I.e.,AB has the same (positive) valueBs.

For practical reasons the slash is used evenhandedratios and divisions, and the square robt, is

denotedn the exponential formx ®°, and the reciprocal valug/x, in the exponential formx .

Figure 3. (a) Woodcut of a dodecahedron fidarmonicis Lib. V, Cap..l(b) Regular pentagonal faed8CEF of Kepler's
dodecahedron. The diagon&E is an edge of the dotted outlined cubEDJ... in the original woodcut. (c) Intersecting
plane of the dodecahedron shown in figure 3a, Beemthe right hand side, and defined by the poifit$, andQ.

In figure 3b, the poinH denotes the intersection point of the diago#disandCF of the regular pentagon
ABCEF, dividing the diagonaCF into CH andHF. The ratioCH/HF is the golden ratio(lat. proportio diving,
defined by the equatioc@H/HF = CF/CH. Today we commonly denote the resulting valueheygreek letterr,
with T = 0.5(5 %°+ 1) = 1.61803398... Kepler knew how to calculate with equal accuracy!

In figure 3b the rule of similar triangles leadsrfr CH/HF =t to TG/GF = 7, and furthermore, in figure 3c,
from TG/GF =t toML/LQ =1t and lastly taMK/KT =+, due toMQ = MT andML = MK . In accordance to
the previous definition of thgolden ratiofollows MK/KT = MT/MK = =.

The rectangular triangleSKT andMPT are similar, due to their identical anglesTinalthough they are
mirror-inverted. The rule of similar triangles lsadMP/MT = GK/GT , respectively ttMP = (GK/GT) MT.

With GT = (GK 2+ KT ?)%°= (1% + %) ®° GK, and withMT = t MK = 1 GK, results:

ri®d=MP = (GK/GT)MT = (1 /(1% +7 %) %) t GK = 1.376381920 GKand furthermore:

r&=MF=MQ?+QF?)%=(12+172)%GK = 3°°GK = 1.732050808 GKnote:MF = MA yngisorted)-

The ratio of the radii of the inscribed to the gimscribed sphere is: 2r % = 0,79468472....

This reconstructed calculation confirms exactlyrgult of Kepler,r 2% %4 as100000to 79465
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4. The reconstructed calculation of the spheres tifie small stellated dodecahedron

The first known realisation of the small stellathmblecahedron, in the following simply callgt star is a
marmor mosaic in the Basilica di San Marco in Veniom Paolo Uccello (139% 1475). Today the star is
called a Kepler-Poinsot polyhedron. The star dadsear Kepler's name because of his famous woostouvn
in figure 4a, but rather in that he specified s@xact measures of the star. He considered thabescsphere as
the greatest possible one, and not, as we do t@dathat one which is limited by the interpenetgtplanes.
This view is proved by the fact that Kepler markiee relating osculation points of the greatestribstl sphere
with the characte®. The pointsO are the half-dividing points of the concave edgethe star respectively of
the edges of the dodecahedron which is hiddenertbiel star (see figure 4a).

P andP’ are corners of the star, i.e. the osculation gaiith its circumscribed sphere. They correlatthto
corners of an icosahedron, which is the dual golid dodecahedron as shown in figure 4c. Kepletenirothe
original latin text [5]: ‘..in stella, ut100000ad 52573 dimidium latus lcosaédri, seu dimidium distantise
duorum radiorum’ l.e., Kepler calculated the ratio of the radiitbé circumscribing sphere of the star to that
inscribed in it asl00000to 52573 Furthermore he argues that the radius of therilmst sphere is half the
distance between two corndtsindP’ of the star respectively half the edge length dlating icosahedron.
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Figure 4. (a) Woodcut of the small stellated dotiedaon fromHarmonicis Lib. V, Cap..I(b) Intersecting plane defined by
the pointsP, O, andP’, seen from the right hand side of the star inrfigdia. The geometry of the poilsO, P', M, K, T,
andG, is equivalent to figure 3c, counterclockwise tethaboutM with the angleQMP. (c) This original woodcut shows
the duality of a dodecahedron to an icosahedroe.vidgw is the same than in figure 4a, witin the image center.

For a proof that the radius® is equal toPP’/2 we have to show thaflO is equal toPN (see figure 4b).
With respect to the dotted outlined square in #g8c it can be shown that the legs of the grey ewhrkight-
angled triangleGKT have the rati®sK/KT = =, by reason oGK = MK andMK/KT = <. The similarity of the
trianglesGKT andPNT in figure 4b leads to the ratlPN/NT =t and equally t®®N/NO =1, becausd P and
P’O are parallelPN/NO =1 implies PN+NO)/PN =1, in accordance to the definition of thelden ratio

The similarity of the triangl®NT to the triangleMNP involvesMN/PN = 1. The substitution oMN with
MO+ON leads to MO+ON)/PN =1.

The equalisation of MO+ON)/PN =1 and PN+NO)/PN =1 lastly givesMO = PN, g.e.d.

The radii are:r 2 = MO and r 3 = MP = (MN 2+ PN?)%® =((t MO)?+ MO ?)%® =(r2+ 1) >>MO

Consequently the ratio of the star radii amounts §§/r 8" = 1 /(z 2+ 1) *°= 0,52573112....

In turn the calculation confirms the result of Keplwithr $/r 2 as100000to 52573
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5. Kepler’s dialectic understanding of artistic imagination and mathematical verification

In the Mysterium Cosmographicufd] from 1596, Kepler illustrated the concentrighsres of the planets
with a specific thickness (compare figure 1), teegspace for the excentricity of the respectivengiary orbits.
The idea that the distances between the sphetbs planets are determined by the circumscribedrswlibed
spheres of the five Platonic solids was probabdpiired by the work of artists. The detail from LazeStoer’s
woodcut [6] in figure 5 shows an octahedron ingideerforated, enveloping sphere.

Since 1600 Kepler lived in Prague, and worked asigmistant of the well-
known Danish astronomer Tycho Brahe. In the yeties Brahe’s death in 1602,
Kepler discovered that the excentric orbits ofgilenets have elliptic shapes.

In 1609, in his workAstronomia novd7], he published his first two laws
about planetary motion on the base of Brahe’s fanastronomical data.

Both, Brahe’s data and Kepler's increasing numeskilis, let him revise his
early model from 1596, but without completely distiag it. In the fifth book of
his main workHarmonices Mund[5], published in 1619, he remarked that there
must act polymorphic geometrical figures beyond fike Platonic solids. He
found out that the ratio of the distance Venus-8uthe shortest distance Mars-

Sun correlates to the ratig®/r 32 (figure 4b), so that the intermediate sphere of
Figure 5. Lorenz Stoer, 1567 the Earth would be interpenetrated by the twelkespof the star. Possibly, this
Detail from woodcut No. 8 idea was directly inspired by the illustration afrenz Stoer!

6. The relevance of Kepler's work for the contempaary empirical science

Although Johannes Kepler was a religious man, he evee of the first who delivered the natural plofasy
from the stranglehold of the ecclesiastic dogmagiply direct observation right at the top, in ademce to our
present-day understanding of empirical science.

On the one hand we admire the mathematical trgemfelsepler’s three laws
about planetary motion, on the other hand we amge® to belittle his early
cosmological model. However, this artistical models, despite its falsity, the
impetus of Kepler's epoch-making astronomical work.

@ Today, we are challenged to imagine objects ofstifsatomic space. In that
we cannot observe them directly we have to useldgyimg models too. Figure 6
shows, in which way the 110 electrons of a syn#essDarmstadtium atom are
distributed about seven shells in accordance totictear shell model.

But just because it seems to be impossible to dimgal representation of
atomic substantiality, we should be aware thastictimagination could be a

Figure 6. Nuclear shell model helpful catalyst in an effort to transform measudada by complex calculations
Darmstadtium Ds 110 (1994) into a deeper insight.
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