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Constructing and studying the hyperbolic soccer ball is an enjoyable activity resulting in a beau-
tiful model which can be used to investigate the hyperbolic plane and non-Euclidean geometry.

Constructing the Hyperbolic Soccer Ball. These instructions construct the rightmost model above.

Materials:
• Printed templates. One: One or two:
• Scissors and Tape.

Directions: Carefully cut out all polygons along the dotted lines. Save the central hexagon in the first template,
cutting a path to it. Tape a black heptagon edge-to-edge to the six hexagons in the hole, taping on the unprinted
side. Place pieces of the tape across (not along) the edges, using two pieces for each edge, and taking care to not

put tape over a vertex. When taping a second edge at a vertex, the model must be opened a bit (below left), and
it will not lie flat. Tape the central hexagon into the gap which is left (below center). Tape two black heptagons

into the indentations along a side and then the W-shaped strip of hexagons from the second template to them
(above right). This gives three heptagons surrounding a central hexagon, surrounded by 15 hexagons with one
more breaking the symmetry. Tape the remaining five heptagons to complete this model (top right).

Investigate Non-Euclidean Geometry.
Materials: Pencil and a short (≤ 15 cm) straightedge, and a 3”× 5” card (card is not essential).

Draw a line: With unprinted side up, flatten two adjacent polygons and draw a line segment. Extend this segment
across model with straightedge (or card) to a line ℓ. Grasp the model with both hands (index fingers on the lines),
pull taught, and sight down the line to verify that it is straight.



Diverging parallels. Draw a segment m perpendicular to ℓ, and then a line ℓ′ perpendicular to m. The lines ℓ
and ℓ′ are parallel (lines perpendicular to the same line are parallel). Notice how they diverge.

Parallel Postulate. Given parallel lines, extend a new perpendicular
segment from one (ℓ) meeting the second at point P . The line per-
pendicular to the segment at P is parallel to ℓ, giving two parallels to ℓ
through P ( 6∈ ℓ). Thus Euclid’s parallel postulate, or rather the equivalent
Playfair’s axiom (At most one line can be drawn through any point not

on a given line parallel to the given line in a plane) does not hold.
(This also constructs a Lambert quadrilateral (three right angles), but
that is another story.) Compare your figure to that of your friends.

Triangle. Draw a large triangle on your model. What are its angles? You can measure their sum as follows:
Cut a small semicircle from your card, marking a centre on the
straight side. Put the centre at the vertex of an angle, align one
ray along the edge, and mark the other ray (A) on the arc. Put
the center at the vertex of a second angle, align one ray
with the mark (A), mark the
other ray (B) on the arc. Re-
peat for the third angle to get the
angle-sum. Compare your angle-
sum to that of others and try
to formulate a conjecture for this
angle-sum.

(A)
(B)

Curvature. The model is flat, except at its vertices, each
of which contributes −60/7◦ ≈ −8.5◦ of curvature in a δ-
function. (This is the excess at the vertex, the difference of
360◦ and the sum of the incident angles.) This gives the devi-
ation from Euclidean geometry. For your triangle check that

angle sum+ 8.5◦ ·# vertices inside triangle ≈ 180◦ .

For the triangle at right, we have 28+43+40+8 ·8.5 = 179.0.
Check this relation, or better compare your angle-sum to that of
other students. Do this also with your Lambert quadrilaterals.
This makes a very fascinating guided discovery activity.

For more information, see www.math.tamu.edu/~sottile/research/stories/hyperbolic football/

or google “sottile hyperbolic football”. I highly recommend making a very big model.


