



## **Fractals**

Easterlin Faamausili and Gabrielle Baird• March 2018



Fractals consist of repeated shapes, and they are different to other geometrical shapes because of their fractional dimension.



## Fractals in Nature



# Mandlebrot Set (Apfelmännchen)

This is the result of the equation  $f(z)=2^2+c$  being applied to each point in the plane over and over again.



#### How does Mathematics generate Fractals?

The shape is defined by mathematical rules. These rules are applied over and over again for infinitely many times.

e.g. 
$$f(z)=z^2+c$$
 (Mandelbrot Set)



Or Koch Snowflake









Primordial sequence



### <u>Diverging and</u> <u>Converging</u>

Converging is when the starting point leads to a certain point. Divergent is when the starting point leads off to infinity (not to one certain point).

#### Why are they called Fractals?

Because the dimensions are fractions.

A line, when one side doubles, the length doubles. (ie.  $2^1$ ) When a side of the square doubles, the area quadruples (ie.  $2^2$ ), and then when a side of a cube doubles, the volume increases by a factor of 8 (ie  $2^3$ ).

When a side of this triangular fractal doubles, it's area increases by a factor of three.

#### Sierpinski triangle



#### Working out:

$$2^{x}=8$$

$$X = \log_{2} 8 = 3 \text{ (Dimensions of the Cube)}$$

$$X = \log_{2} (3)$$

$$X = 1.585$$

(Dimensions of the Sierpinski triangle)

Dimension 1 Dimension 1.585... Dimension 2 Dimension 3

#### Glossary:

- Dimension: Dimension
  - Shape: Form
  - Fractal: Fraktal
- <u>Diverging:</u> divergierend
- Converging: konvergent
- <u>Mathematics:</u> Mathematik
  - <u>Geometrical:</u> geometrisch
    - Fractional: gebrochen
      - Equation: Gleichung
        - Point: Punkt
        - Fractions: Brüche
    - To double: verdoppeln

## Different types of Fractals











