
DEFORMATIONS OF SYMMETRIC CMC SURFACES IN THE
3-SPHERE

SEBASTIAN HELLER AND NICHOLAS SCHMITT

Abstract. In this paper we numerically construct CMC deformations of the Law-
son minimal surfaces ξg,1 using a spectral curve and a DPW approach to CMC
surfaces in spaceforms.

1. Introduction

The moduli spaces of CMC (constant mean curvature) spheres and embedded CMC
tori in the 3-sphere are well understood by now. The only CMC spheres are totally
umbilic due to the vanishing of their Hopf differential. Brendle [3] recently proved
the Lawson conjecture that the only embedded minimal torus in the 3-sphere is
the Clifford torus. Using Brendles method Andrews and Li [1] have classified all
embedded CMC tori in S3. Additionally, all CMC immersions from a torus into
3-dimensional space forms are given rather explicitly in terms of algebro-geometric
data on their associated spectral curves [22, 12, 2]. These integrable system methods
are also applied to study the moduli space of all CMC tori, see for example [18, 20].

In contrast, higher genus CMC surfaces in S3 are not very well understood. There
are examples like the Lawson minimal surfaces [21] which exist for all genera. All
known examples have been constructed by implicit methods from geometric analysis.
However, there is no theory which describes the space of all CMC surfaces of higher
genus, nor is there any classification of the embedded ones.

The study of CMC surfaces via integrable systems is based on the associated family

λ ∈ C∗ 7→ ∇λ = ∇+ λ−1Φ− λΦ∗

of flat SL(2,C)-connections on a fixed hermitian rank 2 bundle [12]. For minimal
surfaces in S3 the flatness of this family of connections is just a gauge theoretic
reformulation of the Gauss-Codazzi and harmonic map equations. For CMC surfaces,
the family of flat connections comes from the Lawson correspondence together with
the Sym-Bobenko formula. The connections ∇λ are unitary for λ ∈ S1 ⊂ C∗ and
trivial at two Sym points λ1 6= λ2 ∈ S1. The immersion can be obtained as the gauge
between ∇λ1 and ∇λ2 , and its mean curvature is given by H = iλ1+λ2

λ1−λ2 . By loop group
factorization methods, CMC surfaces can also be constructed out of families of flat
connections which have a certain asymptotic behavior at λ = 0 and are unitarizable
along the unit circle, i.e., unitary with respect to a λ-dependent metric (see Theorem
2).
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These families of flat connections can be constructed by two different methods: the
spectral curve approach and the DPW approach. The first describes the family via
flat line bundles parametrized by a spectral curve, i.e., a double covering of the
spectral plane, as in Theorem 4. The flat line bundles are defined on a double
covering of our Riemann surface, and the moduli space of them is given by an affine
bundle over the Prym variety. The second uses a so-called DPW potential [5], a loop
of meromorphic sl(2,C)-valued 1-forms. The first method has the advantage that it
is easier to deal with the unitarity condition, while the second can take advantage of
the implementation of DPW in the XLab software suite.

The main difficulty in constructing higher genus CMC surfaces is that the generic
connection ∇λ is irreducible. Therefore, it is not understood by now how to make
families of flat connections which are unitarizable along the unit circle. A flat con-
nection is unitarizable if and only if its monodromy representation is unitary modulo
conjugation. This is a condition which can be tackled numerically: using numerical
ODE solvers one can compute the monodromy representation, and then apply basic
results like Proposition 2 to determine whether a connection is unitarizable.

In the case of the spectral curve approach one also has theoretical support: as a
consequence of the Narasimhan-Seshadri theorem it is known that for every holo-
morphic line bundle there exists exactly one flat compatible connection such that
the corresponding flat SL(2,C)-connection is unitary. This enables us to numerically
determine the space of unitary connections. With this knowledge we can numer-
ically search for families of flat connections which are unitarizable along the unit
circle. With this spectral curve approach we reconstructed the Lawson surface ξ2,1.

In the DPW approach, on the other hand, we combine these two steps, directly com-
puting the families of unitarizable DPW potentials. The explicit translation from the
spectral curve to the DPW theory provided initial data and elucidated the conditions
at the sym points. We have carried out the DPW experiments for a special class
of CMC surfaces, namely Lawson symmetric ones. They are equipped with a large
group of extrinsic orientation preserving symmetries, which are holomorphic auto-
morphisms on the Riemann surface. Due to this symmetry group, the moduli space
of the possible Riemann surface structures is complex 1-dimensional. Its cotangent
space is spanned by a quadratic differential which is the Hopf differential of a possible
Lawson symmetric CMC immersion. A nice feature of such an immersion is that its
curvature lines are closed (see Figure 1).

Our experiments give strong evidence to the existence of real 1-dimensional families of
Lawson symmetric CMC surfaces passing through the Lawson surfaces ξg,1 themselves
(see Figure 4). In the case of g = 1 this family is known from the spectral theory
of CMC tori. We reconstructed this 1-parameter family numerically as a test of
our procedure, bifurcating into the 2-lobed Delaunay tori of spectral genus 1, or
continuing along the homogeneous tori of spectral genus 0. For higher genus Lawson
symmetric CMC surfaces such bifurcations into higher spectral genus did not appear;
these families continue until they collapse into double coverings of minimal spheres (as
the Delaunay tori do). In genus 2 we have also found a family of Lawson symmetric
CMC surfaces, disjoint from the family passing through ξ2,1, which seems to converge
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Figure 1. The Lawson surfaces ξg,1 of genus g = 2, 3, 4, 5.

to a threefold covering of a CMC sphere (see Figure 5). Altogether, our experiments
begin to map out the moduli space of Lawson symmetric CMC surface of genus 2.

The paper is organized as follows: In chapter 2 we describe the necessary theory
for our experiments. In chapter 3 we discuss the first experiments on the Lawson
surface of genus 2 via the spectral curve approach. Chapter 4 concerns the numerical
deformations of Lawson symmetric CMC surfaces of genus 2. Chapter 5 collects
experiments with Lawson symmetric surfaces of higher genus. In the last chapter 6
we give a short outlook on the computational aspects of our studies.
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2. Theoretical background

We shortly recall the well known description of conformal CMC immersions f : M →
S3, where M is a Riemann surface and S3 is equipped with its round metric [12,
2, 8]. Due to the Lawson correspondence, there is a unified treatment for all mean
curvatures H ∈ R:

Theorem 1. Let f : M → S3 be a conformal CMC immersion. Then there exists an
associated family of flat SL(2,C)-connections

λ ∈ C∗ 7→ ∇λ = ∇+ λ−1Φ− λΦ∗

on a hermitian rank 2 bundle V → M which is unitary along S1 ⊂ C∗ and trivial
at λ1 6= λ2 ∈ S1. Here, Φ is a nowhere vanishing complex linear 1-form which
is nilpotent and Φ∗ is its adjoint. Conversely, the immersion f is given as the
gauge between ∇λ1 and ∇λ2 where we identify SU(2) = S3, and its mean curvature
is H = iλ1+λ2

λ1−λ2 . Therefore, every family of flat SL(2,C)-connections satisfying the
properties above determines a conformal CMC immersion.

Note that the complex linear part of the family of flat connections extends to λ =∞
whereas the complex anti-linear part extends to λ = 0. It is well known [12], that for
compact CMC surfaces which are not totally umblic, the generic connection ∇λ of
the associated family is not trivial. Moreover, for CMC immersions from a compact
Riemann surface of genus g ≥ 2, the generic connection ∇λ of the associated family
is irreducible [8].

An important observation is that it is often enough to work with a family connections
which is only gauge equivalent (in a certain sense) to the associated family of a CMC
surface. This enables us to use our preferred connections like meromorphic ones. In
our situation we make use of the following theorem in order to construct compact
CMC surfaces.

Theorem 2. Let U ⊂ C be an open set containing the disc of radius 1 + ε. Let
λ ∈ U \ {0} 7→ ∇̃λ be a holomorphic family of flat SL(2,C)-connections on a rank 2
bundle V →M over a compact Riemann surface M of genus g ≥ 2 such that

• the asymptotic at λ = 0 is given by

∇̃λ ∼ λ−1Ψ + ∇̃+ ...

where Ψ ∈ Γ(M,K End0(V )) is nowhere vanishing and nilpotent;
• for all λ ∈ S1 ⊂ U ⊂ C there is a hermitian metric on V such that ∇̃λ is

unitary with respect to this metric;
• ∇̃λ is trivial for λ1 6= λ2 ∈ S1.

Then there exists a unique (up to spherical isometries) CMC surface f : M → S3

of mean curvature H = iλ1+λ2
λ1−λ2 such that its associated family of flat connections ∇λ

and the family ∇̃λ are gauge equivalent, i.e., there exists a λ-dependent holomorphic
family of gauge transformations g which extends through λ = 0 such that ∇λ · g(λ) =
∇̃λ for all λ.
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In the above form, this theorem was proven in [10], but there are earlier variants
adapted to the DPW approach to k-noids [23, 6].

Remark 1. The theorem remains true, if there exists λ-independent apparent sin-
gularities of the connections ∇̃λ. It also remains true, if there exists finitely many
point on the unit circle, where the monodromy is not unitary. In both cases, the
corresponding singularities (on the Riemann surface in the first case, and on the
spectral plane in the second) are captured in the positive part of the Iwasawa de-
composition (see the proof of this theorem in [10]). Therefore, the actual associated
family of flat connections ∇λ has no singularities anymore, and the CMC immersion
is well-defined.

From now on we focus on CMC immersions from a compact Riemann surfaces of
genus 2 which have the following (extrinsic, space orientation preserving) symmetries:

• an involution ϕ2 with exactly 6 fix points which is holomorphic on the surface
and commutes with the other symmetries;
• a Z3-symmetry generated by ϕ3 with 4 fix points which is also holomorphic

on the surface;
• another holomorphic involution τ with only 2 fix points.

These surfaces are called Lawson symmetric CMC surfaces (of genus 2). The sym-
metries already fix the Riemann surface structure up to one complex parameter. To
be more precise, the underlying Riemann surface is given by the equation

y3 =
z2 − z2

0

z2 − z2
1

.

Clearly, Lawson symmetric Riemann surfaces corresponding to tuples (z0, z1,−z0,−z1)
with the same cross-ratio are isomorphic. The Riemann surface structure of the
Lawson surface ξ2,1 is given by z0 = 1, z1 = i. In this picture the symmetries

are given on the Riemann surface by ϕ2(y, z) = (y,−z), ϕ3(y, z) = (e
2
3
πiy, z) and

τ(y, z) = (( z0
z1

)
2
3

1
y
, z0z1

z
).

There is a method called dressing which makes new CMC surfaces out of old, see for
example [4]. The idea is that a CMC surface is in general not uniquely determined by
the family of gauge equivalence classes of its associated family of flat connections. It
was shown in [10] that a dressing deformation of a Lawson symmetric CMC surface
is not Lawson symmetric anymore. Therefore, for Lawson symmetric CMC surfaces
it is enough to know the family of gauge equivalence classes of its associated family
of flat connections.

Altogether, in order to find CMC surfaces we need to find a holomorphic curve in
the moduli space of flat SL(2,C) connections on M which may be lifted to a family
of flat connections satisfying the properties of Theorem 2. Moreover for Lawson
symmetric CMC surfaces, we do not need to consider the moduli space of all flat
SL(2,C) connections but only those which are equivariant with respect to ϕ2, ϕ3 and
τ. We call these connections flat Lawson symmetric connections.
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2.1. The spectral curve approach. One way to construct families of (gauge equiv-
alence classes of) flat connections is based on Hitchin’s abelianization [11]. We will
restrict our discussion to the case of flat Lawson symmetric connections ∇. On a
Riemann surface, a connection can be decomposed into a holomorphic and an anti-
holomorphic structure

∇ = ∂̄
∇

+ ∂∇,

where ∂̄
∇

maps to complex anti-linear 1-forms and ∂∇ maps to complex linear 1-
forms. There are several reasons why it is useful to consider holomorphic struc-
tures in the discussion of flat connections on a (compact) Riemann surface: By the
Narasimhan-Seshadri theorem there exists for a generic holomorphic structure on
a degree 0 bundle a unique flat connection ∇ such that ∇ is unitary with respect

to a suitable hermitian metric and such that ∂̄
∇

= ∂̄ . Second, if ∇ is already flat,
and we add a (trace-free) complex linear 1-form Ψ ∈ Γ(M,K End0(V )) then ∇+ Ψ
is flat if and only if Ψ is holomorphic. Such 1-forms are called Higgs fields. This
observation shows that the (moduli) space of flat connections is an affine bundle over
the (moduli) space of holomorphic structures, where the fibers consist of the finite
dimensional space of Higgs fields, at least at its smooth points. Moreover, in the
generic fiber there is a unique point such that the corresponding flat connection is
unitary for a suitable hermitian metric. And lastly, as we have already mentioned

above, the family of holomorphic structures ∂̄
∇λ

extends to λ = 0. Therefore it seems
to be very useful to discuss the moduli space of flat connections as an affine bundle
over the moduli space of holomorphic structures in order to analyze the asymptotic
behavior of ∇λ for λ→ 0.

As we are only interested in Lawson symmetric connections, we only need to deal
with Lawson symmetric Higgs fields, i.e., Higgs fields which are also equivariant with
respect to ϕ2, ϕ3 and τ. It was shown in [10] that for a generic Lawson symmetric

holomorphic structure ∂̄
λ
, the Lawson symmetric Higgs fields constitute a complex

line. Their determinant is a holomorphic quadratic differential and invariant under
the symmetries. Therefore, for a generic Lawson symmetric holomorphic structure
and a non-zero Lawson symmetric Higgs field Ψ its determinant det Ψ is a non-zero
multiple of the pull-back of dz2

(z2−z20)(z2−z21)
. Its zeros are simple, so the eigenlines of

Ψ are only well defined on a double covering π : M̃ → M. Clearly, M̃ inherits the
symmetries of M. Note that M̃/Z3 is a torus while M/Z3 is the projective line. The
eigenlines L± of Lawson symmetric Higgs fields with non-zero determinant satisfy
L+ ⊗ L− = π∗KM . Therefore, the eigenlines for all those Lawson symmetric Higgs
fields constitute an affine Prym variety for M̃ → M. As a base point of this affine
Prym variety we fix the pull-back of the dual of the (unique) Lawson symmetric spin
bundle S∗ = L(−Q1−Q3+Q5)→M, where the points Q1, Q3 and Q5 are Weierstrass
points which make an orbit under the Z3-action. This enables us to understand the

moduli space of Lawson symmetric holomorphic structures ∂̄
λ
.

Proposition 1. [10] There exists an even holomorphic map

(2.1) Π: Jac(M̃/Z3)→ S = P1
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of degree 2 to the moduli space S of Lawson symmetric holomorphic bundles. This
map is determined by Π(L) = [∂̄] for L 6= C ∈ Jac(M̃/Z3) such that π∗S∗ ⊗ π̃∗L is
isomorphic to an eigenline bundle of a symmetric Higgs field of the Lawson symmetric
holomorphic rank two bundle (V, ∂̄). The branch points of Π are the spin bundles of
M̃/Z3 and the branch images of the non-trivial spin bundles are exactly the isomor-
phism classes of the strictly semi-stable holomorphic bundles, i.e., the corresponding
unitary flat connections are reducible.

Away from the zeros of det Ψ, the eigenlines of a Lawson symmetric Higgs field Ψ
with respect to a Lawson symmetric holomorphic structure ∂̄ span the holomorphic
rank 2 bundle π∗V, i.e., there is a holomorphic map φ : L+ ⊕ L− → π∗V which is an

isomorphism away from the zeros. A flat connection ∇ with ∂̄
∇

= ∂̄ can be pulled
back to L+⊕L− → M̃ in order to yield a meromorphic connection also denoted by∇.
The second fundamental forms of ∇ with respect to the eigenlines are meromorphic
line bundle valued 1-forms, and the residuum of ∇ at the zeros of det Ψ can be easily
computed. Adding a multiple of the Higgs field Ψ to ∇ on V corresponds to adding a
diagonal 1-form to ∇ on L+⊕L−. In our Lawson symmetric situation, the connection
∇ on L+⊕L− is given explicitly in terms of theta-functions on the torus M̃/Z3. But
it is even easier to work on the quotient of M̃/Z3 by the symmetries ϕ2 and τ which
a again is a torus, denoted by T 2. We will only state the formulas in the case of the
Lawson Riemann surface structure. In this case M̃/Z3 as well as T 2 are square tori.
If we identify T 2 = C/(Z+iZ) then a Lawson flat symmetric connections corresponds
to the connection 1-form

(2.2) ω = ωx,a =

(
πadz − πxdz̄ c θ(z−2x)

θ(z)
e−4πix Im(z)dz

c θ(z+2x)
θ(z)

e4πix Im(z)dz −πadz + πxdz̄

)
where θ is the theta-function of T 2 which has a simple zero at 0 and

(2.3) c =
1

6

√
θ′(0)2

θ(2x)θ(−2x)
.

The corresponding holomorphic structure ∂̄
∇

on the rank 2 bundle is determined by

Π(∂̄
0±πxdz̄), and adding a multiple of the Higgs fields on ∇ is equivalent to adding

a multiple of the diagonal matrix with entries dz and −dz on ω. This discussion
also leads to a full understanding of the moduli space of Lawson symmetric flat
connections:

Theorem 3. [10] Let ∂̄ be a Lawson symmetric semi-stable holomorphic structure
on a rank 2 vector bundle over M. Assume that ∂̄ is determined by the non-trivial
holomorphic line bundle L ∈ Jac(M̃/Z3), i.e., Π(L) = [∂̄]. Then there is a 1:1
correspondence between holomorphic connections on L → M̃/Z3 and flat Lawson
symmetric connections ∇ with ∇′′ = ∂̄ . The correspondence is given explicitly by the
connection 1-form (2.2).

The remaining flat Lawson symmetric connections are given by two lines lying over
the point C ∈ Jac(M̃/Z3). For this case x = 0, and formula 2.2 breaks down. This is
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not surprising, since the holomorphic structure corresponding to C ∈ Jac(M̃/Z3) is
the holomorphic direct sum S∗ ⊕ S → M which does not provide a flat connection.
Nevertheless, the gauge orbit of this holomorphic structure is infinitesimal close to the
gauge orbits of two other holomorphic structures, namely the holomorphic structure
corresponding to the uniformization of the Riemann surface (which does not provide

a unitary flat connection) and the holomorphic structure ∂̄
∇0

given by the (well-

defined) limit of ∂̄
∇λ

for λ→ 0 of the associated family. Both holomorphic structures
admit an affine line of Lawson symmetric flat connections, and they are given as
special limits of (2.2), see [10] for details.

Theorem 3 shows that flat Lawson symmetric connections are uniquely determined
by a flat line bundle connection on M̃/Z3. But this flat line bundle is not unique
as its dual gives rise to the same flat SL(2,C)-connection. Therefore, in order to
parametrize families of flat connections λ ∈ C∗ → ∇λ, one needs in general a double
covering Σ→ C∗ in order to parametrize the corresponding family of flat line bundles.
This leads to the following picture:

Theorem 4. [10] Let λ 7→ ∇λ be the associated family of a conformal Lawson sym-
metric CMC immersion of a compact Riemann surface of genus 2. Then there exists
a Riemann surface p : Σ → C double covering the spectral plane C together with a
map L : Σ→ Jac(M̃/Z3) such that

Σ
L //

p

��

Jac(M̃/Z3)

Π
��

C
[∂̄
λ

]

// S

commutes. The spectral curve Σ branches at 0. Moreover, there exists a meromorphic
lift D with a first order pole over λ = 0 into the affine moduli space Af of flat line
bundles on M̃/Z3 such that

Af

′′
��

abel

��

Σ

D
66

L
//

p

��

Jac(M̃/Z3)

C
[∇λ]

// Af2

commutes, where Af2 is the moduli space of flat Lawson symmetric connections on
M and abel is the map discussed in Theorem 3.

Conversely, a triple (Σ,L,D) as above determines a family of Lawson symmetric flat
connection on M which has the asymptotic behavior as in Theorem 2. In order to
obtain a CMC immersion the family of flat connections has to satisfy the reality
condition and the closing condition. The second condition is easy compared to the
first one as one knows which flat line bundle on the torus M̃/Z3 determines the
trivial connection on M : It is the flat unitary line bundle which has monodromy
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−1 along both of the ”standard” generators of the first fundamental group of the
torus M̃/Z3. The main difficulty is to find spectral data (Σ,L,D) which satisfy the
reality condition, i.e., the corresponding family of flat SL(2,C)-connections must be
unitarizable along the unit circle. We work out the necessary theory to attack this
problem numerically. As we have discussed above, for each (Lawson symmetric)
holomorphic structure, there exists a unique compatible flat (Lawson symmetric)
SL(2,C)-connection which is unitarizable, i.e., unitary with respect to a suitable
chosen metric. Clearly, this property is equivalent to have unitarizable monodromy.
From Theorem 3 we see that for each holomorphic line bundle on the torus M̃/Z3

there is a compatible flat connection such that the corresponding flat Lawson sym-
metric SL(2,C)-connection is unitarizable. Therefore, we obtain a (real analytic)
section

au ∈ Γ(Jac(M̃/Z3),AF )

of the affine moduli space of flat line bundles over the Jacobian. With the same
notations as used in (2.2) this section is given in the case of the Lawson Riemann
surface by

(2.4) au(x) = − 1

12π

θ′(−2x)

θ(−2x)
+

1

12π

θ′(2x)

θ(2x)
+

1

3
x+

2

3
x̄+ b(x),

where b : Jac(M̃/Z3)→ C is a doubly periodic real-analytic function. This function
can easily be approximated to arbitrary order, see section 3.

The reality condition can now be rephrased as follows: For all µ ∈ Σ with p(µ) ∈ S1

the spectral data have to satisfy

(2.5) au(L(µ)) = D(µ).

We will use this equation later on to determine the spectral data of the Lawson
surface of genus 2 numerically, see Figure 3.

2.2. The DPW approach. Another approach to CMC surfaces in S3 was developed
by Dorfmeister, Pedit and Wu [5]. The basic idea is to work with families of mero-
morphic connections with respect to the trivial holomorphic rank 2 bundle C2 →M

instead of using the varying holomorphic structures ∂̄
λ
. Clearly, one needs to allow

poles in the connection 1-forms as the only holomorphic unitarizable connection on
C2 →M over a compact Riemann surface is the trivial one.

In order to construct CMC surfaces one tries to find a DPW potential

η = η(λ) = λ−1η−1 + η0 + η1λ+ ..,

i.e., a meromorphic λ-family of meromorphic sl(2,C)-valued 1-forms on M with first
order pole in λ such that the corresponding family of flat connections ∇λ = d+ η(λ)
satisfies the properties of Theorem 2. In general, the DPW potential η does not exist
on the whole spectral plane C∗ but only on a small punctured disk around λ = 0.
Moreover, it is not clear in general how many (possibly varying) poles one needs to
allow in order to obtain a potential which give rise to a closed CMC surface in S3.
In the case of the Lawson surface of genus 2, the existence and precise form up to
two unknown functions in λ of such a potential was determined in [9]. In the more
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general situation of Lawson symmetric CMC surfaces on a Riemann surface given by
the equation

(2.6) y3 =
z2 − z2

0

z2 − z2
1

one can easily prove by the same methods that a DPW potential is given by

(2.7) η = ηA,B = π∗

 −2
3

z(2z2−z20−z21)

(z2−z20)(z2−z21)
+ A

z
λ−1 − (A+ 2

3
)(A− 1

3
)

B
z2

B
(z2−z20)(z2−z21)

− λA(A+1)z20z
2
1

z2(z2−z20)(z2−z21)
2
3

z(2z2−z20−z21)

(z2−z20)(z2−z21)
− A

z

dz.
Here, A,B are λ-dependent holomorphic functions on a neighborhood of λ = 0 and
π : M → M/Z3 = CP1. All poles are apparent on M, i.e. the local monodromy
around every pole is trivial. On the quotient M/Z3 = CP1 the poles at z = 0 and
z =∞ are still apparent whereas the conjugacy class of the monodromy around the
poles at the four branch points ±z0 and ±z1 is given by the third root of the identity.

The functions A and B need to be chosen in such a way that the closing condition
and the reality condition is satisfied for the family of flat connections d + η(λ). As
was proven in [9] there do not exists finite values for A, B and λ such that the
holonomy of d + ηA,B is trivial. Nevertheless, there exists values for A and B such
that the monodromy is upper triangular, and these values will guarantee our closing
condition. The reason behind this is that the gauge from the associated family of flat
connections to the connections d+ ξA(λ),B(λ) is singular at the Sym points. This can
be deduced by comparing the spectral curve approach with the DPW approach: As
we have two different ways to describe Lawson symmetric flat SL(2,C)-connections
there must exist a transformation between them. This transformation

(2.8) (x, a) 7→ (A(x, a), B(x, a))

satisfies that the connections d+ωx,a and d+ηA(x,a),B(x,a) are gauge equivalent whence

pulled back to M̃. It can be computed explicitly in terms of theta functions of the
torus M̃/Z3. The gauge gets singular at the trivial connection but the transforma-
tion holomorphically extends through the corresponding values of x and a. As a
consequence, the corresponding meromorphic connection d + ηA(x,a),B(x,a) on the 4-
punctured projective line has only upper triangular monodromy and not a diagonal
one. Using this observation we obtain the following generalized extrinsic closing
conditions at the Sym pointsfor Lawson symmetric CMC surfaces of genus 2 : The
functions A and B are related at the Sym points λ1 and λ2 by

(2.9) B(λk) = Sk(λk) and B′(λk) = S ′k(λk)

where

(2.10) Sk(λ) = z2
kλR(λ) with R(λ) = A(λ)(A(λ)− 1

3
).

One can easily verify by hand that for functions A and B satisfying the above equa-
tions the flat connections d+ξA(λk), B(λk) have upper triangular monodromy. Note
that Theorem 2 can still be applied, see Remark 1 or [23, 6].

For our numerical computations, we do not work with the DPW potential d + ηA,B
as it has a singularity at z = 0. One can easily gauge this apparent singularity away
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by the gauge

(
1 0
−Aλ

z
1

)
to obtain a meromorphic potential d+ η̃A,B which is smooth

at z = 0. Moreover, it satisfies

ϕ∗2(d+ η̃A,B) =

(
i 0
0 −i

)
(d+ η̃A,B)

(
−i 0
0 i

)
where ϕ2 on CP1 is given by z 7→ −z. This implies that at z = 0 the monodromy
matrices M1, M2, M3 and M4 around the poles z0, z1 −z0 and z1 with respect to the
standard basis of C2 are related as follows

M3 =

(
i 0
0 −i

)
M1

(
−i 0
0 i

)
and M4 =

(
i 0
0 −i

)
M2

(
−i 0
0 i

)
.

All these matrices are in SL(2,C) and of trace −1 as the singularities are apparent
when pulled back to the threefold covering M → CP1. We denote the traces of the
products by

2ti,j = tr(MiMj).

The following Proposition gives an easy characterization of unitarizable representa-
tions which we apply in our experiments below:

Proposition 2. Let the four matrices Mk be given as above such that they have no
common eigenline. Then they are simultaneously unitarizable if and only if tk,l ∈
[−1, 1] for all k, l ∈ {1, .., 4}. This condition already holds if t1,2 ∈ (−1, 1) and
t1,3 ∈ (−1, 1). In this case, the four matrices are unitarizable by a diagonal matrix.

3. Experiments: The Lawson surface ξ2,1

As we have described in section 2.1 we need to find a family of flat line bundles
on the torus M̃/Z3 parametrized on the spectral curve Σ → C which satisfies the
reality condition (2.5) in order to construct the Lawson surface ξ2,1. To do so,
we first determine the set of unitary connections numerically, i.e., we compute the
doubly-periodic function b in (2.4): For each x ∈ C and the holomorphic line bundle

∂̄
0−πxdz̄ on M̃/Z3 we searched for the unique au(x) such that the monodromy of

the corresponding flat Lawson symmetric SL(2,C)-connection is unitarizable. An
irreducible flat connection is unitarizable if and only if the traces of all its individual
monodromies are contained in the interval [−2, 2] ⊂ R. This leads naturally to a
functional depending on a which can be numerically minimized by using a numerical
ODE solver as implemented for example in Mathematica. This procedure was done
for all points x in the torus Jac(M̃/Z3) lying on a grid. The doubly-periodic function
b, which is the difference between au and an explicitly known expression (2.4), can
then be approximated by Fourier series on the Jacobian. For the Lawson Riemann
surface the real part of the function b is shown in Figure 2 whereas its imaginary part
is given via the formula b(ix) = −ib(x) due to a real symmetry of the Lawson surface.
Equipped with these numerical data, we searched for the spectral data of the Lawson
surface. We have started with the assumption that the spectral curve does not branch
over the closed punctured unit disc {λ ∈ C | 0 < λλ̄ 6= 1}. This assumption seems
to be natural in view of the assertion concerning the branch points in Theorem 5 in
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Figure 2. The real part of the function b

[10]. Then, an appropriate coordinate on Σ is given by t with t2 = λ, and the maps
L and D in Theorem 4 are given by holomorphic respectively meromorphic functions

x : {t ∈ C | tt̄ < 1} → C
and

a : {t ∈ C∗ | tt̄ < 1} → C,
where a has a first order pole at t = 0 and is holomorphic elsewhere. These functions
can be approximated by their Taylor respectively Laurent series. Note that both
functions are odd in t. Moreover, due to a symmetry of the Lawson surface covering
z 7→ iz which is not space orientation preserving, see [9], the series coefficients xk of
the function x vanish if k mod 4 6= 1 and the series coefficients ak of the function
a vanish if k mod 4 6= 3. Moreover, the coefficients xk are real multiples of 1+i

4
and

the coefficients ak are real multiples of 1−i
4

due to a anti-holomorphic symmetry of
the Lawson surface covering z 7→ z̄.

The numerical search for the coefficients of x and a has been designed as follows: We
have implemented the extrinsic closing condition from the beginning and searched
for a finite number N of real coefficients of the numerical approximates xN and aN :

xN(t) :=
1 + i

4
((1− x1 − x2 − ...− xN)t+ x1t

5 + x2t
9 + ..+ xN t

4N+1)

and

aN(t) :=
1− i

4
((1− a1 − a2 − ...− aN)

1

t
+ a1t

3 + a2t
7 + ..+ aN t

4N−1).

Then we have chosen a finitely many K >> 2N sample points tk in equidistance on
an arc with angle π

2
on the circle. Note that a quarter of the circle is enough due

to the symmetries of the Lawson surface and of the functions. Then we numerically
minimized the functional

F : R2N → R; (x1, .., xN , a1, ..aN) 7→
K∑
k=1

‖ au(xn(tk))− an(tk) ‖2

with the help of the FindMinimum routine in Mathematica. For example for N = 10
and K = 120 we have found a numerical root of this functional with an error of 10−12

which seems reasonable good compared with the expertise of earlier experiments on
k-noids by the second author. The image of the unit circle of these functions is
shown in Figure 3. Note that the (numerical computed) surface obtained out of the
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Figure 3. The spectral data (the complex anti-linear and the com-
plex linear part of the flat connections on the eigenline bundles) of
the Lawson genus 2 surface along the unit circle of the spectral plane.
These data completely determine the associated family of flat connec-
tions of the Lawson surface ξ2,1.

spectral data by means of Theorem 2 has the symmetries ϕ2, ϕ3 and τ. Moreover, it
has the additional space orientation reversing and the anti-holomorphic symmetries
discussed above. From this one can deduce that the so constructed minimal surface
in S3 must be the Lawson surface. In fact, the energy formula in [10] applied to our
numerical spectral data yields an area of 21.91, a value which only slightly differs
from what has been numerically computed in [13] using the Willmore flow.

The reconstruction of CMC surfaces as in Theorem 2 has been implemented in the
software suite Xlab by the second author. However, the input data must be given
as a DPW potential. Therefore, we applied the transformation (2.8) to obtain a
DPW potential of the form (2.7) for z0 = 1 and z1 = i. Note that the functions
A(x(t), a(t)) and B(x(t), a(t)) are automatically even in t which means that we have
obtained holomorphic functions A(λ) and B(λ) depending on the spectral parameter
λ ∈ {λ ∈ C | λλ̄ < 1 + ε}. The symmetries imply that A and B have real coefficients
and that they are also even with respect to λ. An image of the Lawson surface of
genus 2 is shown in Figure 4. Note that the existence of such an image also serves
as a positive test for our numerical experiments.

4. Experiments: Whitham Deformation of Lawson symmetric CMC
surfaces of genus 2

The physical idea behind these experiments is the following: Starting with the Law-
son surface of genus 2 and changing the pressure inside the Lawson surface slightly
will make compact CMC surfaces in S3. As these small deformations should be unique
by physical reasoning the CMC surfaces should again be Lawson symmetric, so we
can use the DPW potential in (2.7) to construct them. The main difference to the
Lawson surface is that there are no space orientation reversing symmetries anymore
as the pressure inside and outside the CMC surface differs. Therefore, the functions
A(λ) and B(λ) are not even anymore. This can also be deduced from the Sym point
condition (2.9) and (2.10).

As we have discussed in section 2 there is a complex one-dimensional family of Rie-
mann surfaces of genus 2 which admit the holomorphic Lawson symmetries. But the
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Figure 4. A family of CMC surfaces of genus 2, starting with the
Lawson surface in the upper left corner, together with their spectral
curves and their Riemann surface type.
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physical insights only indicates a real one-dimensional family of Lawson symmetric
CMC surfaces. By an analogy to tori we may expect that the real one-dimensional
family of Riemann surfaces induced by Lawson symmetric CMC surfaces consists
of those surfaces given by (2.6) with z̄0 = z1, z0z̄0 = 1, which we call rectangular
Lawson symmetric surfaces from now on. Our experiments suggest that this is true,
see Figure 4. In fact, we have not found any Lawson symmetric CMC surface whose
Riemann surface is not rectangular.

We have designed our experiments as follows: Start with a rectangular Lawson sym-
metric Riemann surface and with the corresponding DPW potential (2.7). Write

A =
∞∑
k=0

akλ
k and B =

∞∑
k=0

akλ
k

and approximate them by

An =
N∑
k=0

akλ
k and Bn =

N∑
k=0

akλ
k.

Define the functional

F1 : S1 × CN × CN → R; (λ, a1, .., aN , b1, .., bN) 7→
∑

(Im ti,j)
2 +

∑
(χ(Re ti,j))

2

where ti,j = 1
2

tr(MiMj) for the monodromy matrices Mi of the connection

∇ = d+ ηA(λ),B(λ)

on the four-punctured sphere CP1 \ {±z0,±z1} and

χ : R→ R;x 7→
{

0 x ∈ [−1, 1]
‖ x ‖ otherwise

.

Next, we impose the extrinsic closing conditions (2.9) and (2.10) in our search: Write
B as

(4.1) B = fR + hC

where f is the unique polynomial of degree ≤ 3 satisfying

f(λ1) = z2
0λ1, f(λ2) = z2

1λ2, f
′(λ1) = z2

0 , f
′(λ2) = z2

1

and

h(λ) = (λ− λ1)2(λ− λ2
2)

for the Sym points λ1, λ2 ∈ S1. We again approximate

C =
N−4∑
k=1

ckλ
k.

There is no reason to assume that the anti-holomorphic symmetry of the Lawson
surface is broken for the rectangular Lawson symmetric CMC surfaces. Therefore,
after rotating the spectral plane such that λ̄1 = λ2, we work with the assumption that
A and B are real, i.e., the coefficients ak, ck are real numbers. We fix λ̄1 = λ2 and
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Figure 5. Unlike the CMC Lawson family in Figure 4, this family of
genus two CMC surfaces in the 3-sphere is not connected to Lawson’s
minimal surface ξ2,1. The family is conjectured to limit to a necklace
of three CMC spheres as the conformal type degenerates (lower right).

define a functional as follows: Take a finite number of sample points λ3, .., λK ∈ S1

in equidistance and define

F : R× RN × RN → R; (λ1, a1, .., aN , c1, .., cN) 7→
K∑
k=3

F1(λk, a1, .., bN).

where the bk are computed according to (4.1). Then, we searched numerically for
minimizers of F starting with the initial data of the Lawson surface on a slightly de-
formed rectangular Lawson symmetric Riemann surface. We found evidence, i.e., the
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Figure 6. The Delaunay perspective of the surfaces in Figure 5.

numerical search has found a minimum of order 10−12, for the existence of a Lawson
symmetric CMC surface nearby the Lawson surface. We have repeated this method
in order to obtain a family of Lawson symmetric CMC surfaces through the Lawson
surface itself. The family of Lawson symmetric CMC surfaces is shown in Figure 4
together with images of their DPW spectral curve and with the corresponding four-
punctured sphere defining the Riemann surface structure. The meaning of the DPW
spectral curve picture is as follows: The circle is the unit circle in the spectral plane,
whereas the green points are the Sym points. The blue point is just the center λ = 0
of the spectral plane, while the red point coming inside the unit disc is a zero of the
function B.

4.1. Apparent singularities in the DPW potential. Looking at the DPW po-
tential (2.7) more carefully, one observes that a zero of B causes a pole in the upper
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right corner of ηA,B. For a DPW potential corresponding to a CMC immersion, this
pole must be apparent in λ. By the reality condition, this holds automatically if all
zeros of B are outside the unit disc. When a (simple) zero λ0 of B is inside we have
to ensure that the pole is apparent. There are in principal four possibilities (in the
genus 2 case): A(λ0) = −2

3
and A(λ0) = 1

3
, so that the singularity in the upper right

corner is removable, or A(λ0) = −1 and A(λ0) = 0, so that the lower left corner of
the DPW potential has a zero at λ0 and the first order pole in the upper right gets
apparent by a diagonal gauge only depending on λ.

The family of CMC surfaces through the Lawson surface corresponds to the case
A(λ0) = −2

3
where λ0 is the zero of B of smallest distance to λ = 0. The family

of Lawson symmetric CMC surfaces converges against a doubly covered minimal
sphere while the zero of B converges to λ = 0. The reason for this is that the Hopf
differential is given by the pull-back of B(0) dz2

(z2−z20)(z2−z21)
and hence vanishes in the

limit, so the corresponding surface is totally umbilic and therefore a covering of the
round sphere. Continuing this family through the double covered sphere produces the
same Lawson symmetric CMC surfaces, but this time inside out, until we end at the
Lawson surface again. This gives one component of the space of Lawson symmetric
CMC surfaces in S3, see Figure 7.

There also exits a distinct family of rectangular Lawson symmetric CMC surfaces.
To find this family, we have implemented the condition that at the zero λ0 of B
inside the unit disc we have A(λ0) = −1, and apart from that we have used the
same methods as above. This family converges against a chain of three round CMC
spheres in S3, see Figure 5. In Figure 6 we show the same surfaces but this time after
the stereographic projection preserving the symmetries ϕ2 and τ. Basically, they are
almost 2-lobed Delaunay tori where a piece of a Delaunay cylinder is glued in.

We have not been able to find any surfaces for the remaining two cases A(λ0) = 0
and A(λ0) = 1

3
. If such families would exists, they could not converge against a chain

of spheres. This follows from the energy formula E(f) = −12πA(0), which implies
A(0) must be negative. Moreover, we have not found any Lawson symmetric CMC
surfaces which are not rectangular. There is no reason to believe that they could not
exists. Nevertheless one could expect that they are only immersed not embedded,
thus only exists at a ”higher energy level”.

5. Experiments: The Lawson surfaces ξg,1

A natural generalization of our experiments is given by looking at deformations of
the Lawson surfaces ξg,1 of genus g. These are quite similar to the Lawson surface of
genus 2 but now have a g+1-fold symmetry instead of the threefold one. By analogy,
we used the following DPW potential

(5.1) η = ηA,B = π∗

 − g
g+1

z(2z2−z20−z21)

(z2−z20)(z2−z21)
+ A

z
λ−1 − (A+ 2

g+1
)(A+ 1−g

1+g
)

B
z2

B
(z2−z20)(z2−z21)

− λA(A+1)z20z
2
1

z2(z2−z20)(z2−z21)
g
g+1

z(2z2−z20−z21)

(z2−z20)(z2−z21)
− A

z

dz



DEFORMATIONS OF SYMMETRIC CMC SURFACES IN THE 3-SPHERE 19

�
�
�
��
���

����� � � � � � � � � � � � � � � � � �

�
�
�

�
�
�
�
��
�
�
�
�
�

��

��
��
��

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

H

Conformal type

Figure 7. This graph represents two families of genus two CMC
surfaces based on Lawson’s minimal surface ξ2,1 in the 3-sphere, plot-
ting conformal type against mean curvature. The CMC Lawson family
starts at Lawson’s surface at the lower right and limits to a doubly cov-
ered minimal 2-sphere at the origin at the lower left (see Figure 4). The
plot at the upper left represents a separate family conjectured to limit
to a necklace of three CMC spheres as the conformal type degenerates
(see Figure 5).

in order to perform experiments for Lawson symmetric CMC surfaces of genus g with

Riemann surface structure given by yg+1 =
z2−z20
z2−z21

. The Sym point condition is almost

the same as in the case g = 2 with the only difference that the function R in (2.10) is
given by R = A(A+ 1−g

1+g
). We have performed the experiments for g = 1, .., 8 totally

analogous to the case of g = 2. In all cases we have obtained for z0 = 1, z1 = i the
Lawson surface ξg,1, see Figure 1, and for small rectangular variations of the Riemann
surface structure we have obtained CMC deformations through Lawson symmetric
surfaces. We thus have found numerical evidence that for all genera g there exists
Lawson symmetric CMC deformations of the Lawson surface ξg,1. Especially, in the
case of g = 1 we have recomputed the Clifford torus and CMC deformations of it
which are of course the homogeneous tori of spectral genus 0 first and then bifurcate
to the Delaunay tori of spectral genus 1. The bifurcation can be explained in our
setup as follows. The zero λ0 > 1 of B next to the origin is of order 2 for the Clifford
torus. When it crosses the unit circle it can continue either as a double zero to
the inside or bifurcate to two simple zeros reflected across the unit circle. When it
continues as a double zero the CMC tori remain homogenous whereas in the second
case one obtains unduloidal rotational Delaunay tori of spectral genus 1. We have
done the corresponding experiments for these tori in the DPW approach independent
to the well-established theory of spectral curves for CMC tori. We like to mention
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that the numerics worked in that case as good as in the case of genus g ≥ 2 surfaces
giving again evidence for our experimental setup.

6. Computational aspects

The surfaces were computed using XLab, a computer framework for surface theory,
experimentation and visualization written in C++. XLab implements the DPW
construction [5] of CMC surfaces in S3 in three steps:

• The holomorphic frame is computed as the numerical solution to an ordinary
differential equation. Loops appearing in the DPW construction are infi-
nite dimensional; for computation, they are represented finitely as Laurent
polynomials about λ = 0 by chopping off the infinite Laurent series to heuris-
tically determined powers, typically running from λ−40 to λ40. This chopping
is similar to the way real numbers are represented by rational numbers for
numerical computation.
• The unitary frame is computed from the holomorphic frame via loop group

Iwasawa factorization. This calculation applies linear methods to matri-
ces of coefficients of the Laurent polynomials representing the holomorphic
frame [17].
• The CMC immersion is computed by evaluating the unitary frame at the sym

points.

The most difficult part of the construction of the CMC families was the search for
the accessory parameters in the DPW potential for which its monodromy is unita-
rizable. As with the holomorphic frame, the infinite space of accessory parameters
was made finite by chopping off its power series. The accessory parameters were
compute by optimization (minimization) algorithms. The objective function for the
search measured how far the monodromy of the DPW potential was from being si-
multaneously unitarizable. This measure was computed as the average over a set of
equally spaced sample points on the unit circle in the λ-plane. To speed up these
lengthy calculations, the objective function was computed in parallel over the sample
points simultaneously. Once the accessory parameters in the DPW potential were
found, the diagonal unitarizer, computed as in [19], was used as the initial value for
the holomorphic frame.

Each Lawson CMC surface was built up by applying its symmetry group to one
fundamental piece computed by the DPW construction. The completed surface was
viewed, manipulated and rendered in the XLab S3 viewer.
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