
Interactive simulation of an ash cloud of the
volcano Gŕımsvötn

1 MATHEMATICAL BACKGROUND

Simulating flows in the atmosphere, being part of CFD, is on of the research
areas considered in the working group of Prof. Kröner. Transport of atmo-
spheric species/like volcano ash are part of this topic. Air flows involve many
different parameters, not all of them are relevant in any case. However, all
of these flows are characterized by certain equations which depend on time
and space. A physical basis of these equations are the conservation laws of
mass, momentum and energy. Since we are interested in the time evolution
of the species, the equations obviously have to include the time derivative.
This results in partial differential equations (PDE) (cf. [Krö97]).
In the simplest model of the PDEs for atmosphere, a advection-diffusion-
equation (the terms advection and diffusion will be explained shortly) in
two space-dimensions is derived. The atmosphere is three-dimensional, which
means that the ash movement is simulated at a fixed height level, parallel to
the ground.
The ash is being carried by the air, while the air movement is induced by
the imbalance of physical parameters, such as air temperature, density and
pressure. The air movement can happen on small scale and on large scale.

• On small scale, the process is called diffusion. The motion is then
caused by the molecular movement along the gradient of the quantity.

• Advection is a motion on a large scale. It occurs if a particle in the
air is moved by the wind. The wind is the most important consequence
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of the Sun’s radiation and it can be calculated by equations as well.
These are quite complicated, therefore we simplify our calculations by
determining the velocity: We assume it to be constant and we want to
know how it influences the air movement.

The molecular movement in the diffusion process is expressed by the diver-
gence of a quantity’s gradient. Thus the diffusion is ∇ ·∇c = ∆c. Advection
is the scalar product of the wind vector w and the gradient of the quantity
we are considering, in our case the concentration of the ash, which we denote
by c(t, x). Thus the advection term is w · ∇c.
We are interested in the movement of volcano ash over hundreds of kilome-
ters. That means that the movement on the molecular level is very small and
happens slowly in comparison with the wind. Therefore we can leave out the
molecular processes with good approximation. But the general air motion
usually differs locally. These variations have different reasons, in particular
there is one effect that occurs everywhere in the atmosphere: the so-called
micro-turbulences. They can be pictured as small vortices and are responsi-
ble for air movement on a much smaller scale than the general wind system.
Here, a simplification for our model takes place: Micro-turbulent effects on
very large scales act similarly to diffusion effects on quite small scales (for
example our pot of water). Therefore we take diffusion into account, and as
these micro-turbulent effects can be larger or smaller depending on the cir-
cumstances, the user can choose how strong this effect will be, this is realized
by a constant number ε with which the diffusion term is multiplied.
The PDE will be presented below. Apart from the advection and diffusion
terms there are two further important mathematical terms:

• The first is the time derivative of the concentration ∂tc. It describes how
the other effects make the concentration change in time.

• The second modelizes the volcano itself, its eruption and the ash thrown
into the atmosphere. This is realized by a function that is growing
quickly in the beginning and abiding slowly till vanishing almost com-
pletely. As the volcano eruption is a local event, this function depends
also on the space coordinate ~x. It is called v(t, ~x). We assume that we
know when and how much ash is thrown into the atmosphere.

With all four parts, the PDE looks like follows:

∂tc +∇ · (v c)− ε∆c = v(t, ~x),

We solve this equation using a numerical scheme which consists of a Dis-
continuous Galerkin (DG) method for the space discretization and a
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Runge-Kutta method for the time discretization. The DG method follows
the principle of a Finite Volume scheme: A computational grid divides the
model space (encompassing the Europe map in our case) into parts, the so-
called simplices, entities or grid cells. On each of these entities the values are
computed by calculating the flow to or from the neighbour cells. In Finite
Volume Schemes, these values consist of one constant value per entity, that
is, the solution is approximated by a function that is piecewise constant,
i.e. constant on each entity. The DG methods can be of higher order, which
means that the function is now no longer constant, but can be, for example,
a linear or quadratic function, or a polynomial of higher order. The function
must be calculated in such a manner that it approaches the exact solution
when the grid is being refined.
As the function in one entity differs from the ones in its neighbours, there are
discontinuities at the edges between them (hence “Discontinuous” Galerkin
scheme). This needs to be considerated when calculating the flux from one
cell to another. Then follows the main step of this scheme: calculating values
for the diffusion and advection term. The source equation is determined in
the beginning and can easily be evaluated. As soon as we have obtained
all those values, our equation is reduced to ordinary differential equations
(ODE) that depends on time. ODEs can be solved numerically as well, there
are many well-established methods to achieve this, differing in accuracy and
computation time. We take Runge-Kutta methods of the same order as in
the DG scheme.
Keep in mind that CFD uses approximations. For most PDE of this kind,
the existence of a solution cannot even be proven, let alone computed exactly.
However, in practice, these approximations often give good results and are
used for example for weather forecast and engineering, but also flood pre-
diction etc., in other words they are used in everything that involves fluid
motion.

2 DOWNLOAD AND INSTALLATION

The installation process of this application is very simple. It contains two
steps. First, you have to download the image and burn it on a blank CD. In
the second step, you have to reboot you system from the CD. The interactive
simulation will start immediately.
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Download and burning

Download the live-cd image

dune.mathematik.uni-freiburg.de/dune-ash/image.iso

it has a size of about 200 MB, so it might take some time to download this
file. Use your favorite CD burn software to burn the image on a blank CD.
Depended on your operating system different burning programs can be used.

Run the program

Reboot you PC from the just burned CD. Depending on you system you have
to change the boot order in the BIOS settings of you PC. After booting from
CD the program will start immediately.
When closing the program, the user is asked whether he wants to reboot the
PC to get back to the operating system or he wants to restart the application.

This live-cd is also able to run in a virtual environment (e.g. virtual machine
emulator). In this case, the full performance is not gained.

3 PROGRAM USAGE

After booting from the CD the user will see the graphical interface. It pro-
vides input and output in an intuitive manner. The whole program consists
of three parts: the graphical user interface and two background parts in which
the calculations are realized. The graphical user interface gathers and stores
information needed in the four steps of a program cycle.
One program cycle always starts with the positioning of the volcano. By
touching the screen, clicking the mouse on the desired position the position
of the erupting volcano can be chosen. If the desired position is reached, one
can move on to the next step clicking the ’next’ button.
In the next step, the user can draw some lines, which represent streamlines
of the wind. Based on these lines a wind field is computed using the first
background part.
Clicking once more on the ’next’ button the computations of the wind field
are performed, which might take a few seconds. After that the wind field
is visualized on the screen, illustrated by blue arrows. Their shade of blue
indicates the speed: They range from darker blue (high speed) to paler blue
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(lower speed).
After the computation of the wind field ends, the user can decide how much
ash shall be dispersed by so-called micro-turbulences: There is a slider where
the marked position is interpreted as the strength of the dispersion. If the
user has chosen the strength of the dispersion and moves to the next step,
the second background part starts its work. It computes the actual solution
of the equation in the background. This may take some time and while the
parallel computation is performed. The graphical user interface shows the
progress of the ash on the Europe map. The progress of the simulation can
be seen in the slider in the lower right. The slider also shows the actual
shown frame, in this simulation 100 frames are generated using the second
background part. This frames can be used to start an animation of the ash
spreading over Europe. The animation is started/paused or stopped using
the ’start/pause’ or ’stop’ buttons.
In the third and fourth step of one program cycle, the user may switch be-
tween different aspects of the velocity field with the ’arrow’ button and also
the grid cells can be made visible with the ’grid’ button.
Whenever informations are needed the i-button gives a help screen for the
program. Further information on each aspect of this simulation can be ac-
cessed using the ’Learn more about ...’ links in the right hand panel, marked
in blue.

4 ADDITIONAL INFORMATIONS

Additional informations, e.g. on the volcano or the mathematics, can be
obtain in the interactive simulation using the i-button.
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