MATHEMATICAL EXHIBITION OF PLANT POPULATION GROWTH IN 50M² GARDEN USING THE LOGISTIC EQUATION

 \mathbf{BY}

DAVID OMOGBHE

DAY 1 DAY 2 DAY 3

50 m

50 m

50 m

50 m

The above ecological phenomenon can be modelled by the logistic equation:

$$\frac{dN}{dt} = rN\left(1 - \frac{N}{K}\right) \tag{1}$$

where:

N=population of the plant at a given time,

 $\mathbf{K} = carrying \ capacity = 50m^2$,

 \mathbf{r} =growth rate of the plant=2 per day,

 \mathbf{t} = time (days).

Each plant occupies 1m² of the garden.

The solution of the logistic equation is given by:

$$N(t) = \frac{KN_0}{N_0 + (K - N_0)e^{-rt}}$$
 (2)

Where: N_0 =initial population=1 plant.

Substituting the values of N, K and r in equation 2, we have:

$$N(t) = \frac{50}{1 + 49e^{-2t}} \tag{3}$$

Prediction:

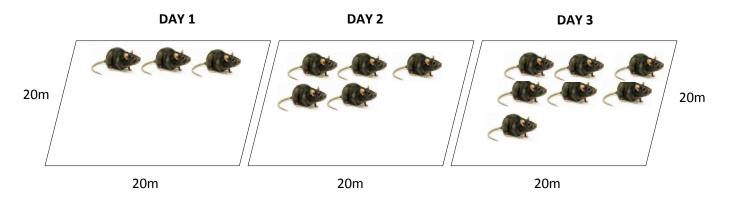
On the 10th day, the population of the plant in the garden is $N(10) = \frac{50}{1+49e^{-20}} \approx 50$ plants. This implies that, after the 10th day, the plants will start competing for space thereby causing a decline in the population growth.

MATHEMATICAL EXHIBITION OF THE PREY-PREDATOR (RAT AND CAT) MODEL USING THE LOGISTIC EQUATION IN 20m² FARM LAND

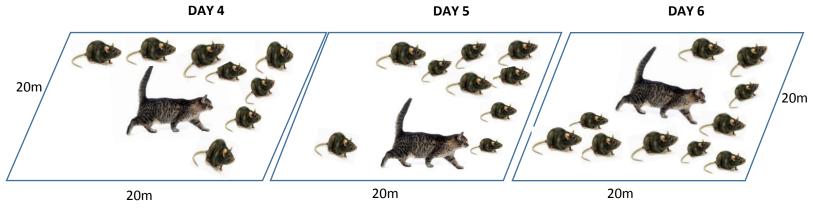
\mathbf{BY}

DAVID OMOGBHE

1. Rat population in the absence of the cat



2. Rat population in the presence of the cat



The above ecological system can be modelled by the logistic equation:

$$\frac{dx}{dt} = \alpha x \left(1 - \frac{x}{k} \right) - \beta x y \tag{1}$$

Where:

x = rat population at a given time,

y = cat population at a given time=1 cat,

k=carrying capacity=20 m^2 ,

 α =rat population natural growth rate=2 per day,

 β =rat population death rate due to presence of the cat= 1 per day,

t = time(days).

The cat and each rat occupies 1m² of the farm land.

On substituting the values α , β and k in equation 1 we have:

$$\frac{dx}{dt} = 2x\left(1 - \frac{x}{20}\right) - xy\tag{2}$$

In the absence of the cat i.e y=0, the equation is reduced to

$$\frac{dx}{dt} = 2x\left(1 - \frac{x}{20}\right) \tag{3}$$

Solving equation 3 we have:

$$x(t) = \frac{20x_0}{x_0 + (20 - x_0)e^{-2t}} \tag{4}$$

substituting x_0 =initial population=3 rats, we have:

$$x(t) = \frac{60}{3 + 17e^{-2t}} \tag{5}$$

In the presence of the cat i.e when y=1, the equation is reduced to

$$\frac{dx}{dt} = 2x\left(1 - \frac{x}{20}\right) - x\tag{6}$$

Solving equation 7 we have:

$$x(t) = \frac{10x_0}{x_0 + (10 - x_0)e^{-t}}$$
 (7)

substituting x_0 =initial population=8 rats, we have

$$x(t) = \frac{80}{8 + 2e^{-t}} \tag{8}$$

Predictions can be made from these results.