Octagonal type of the quasiperiodic succession algorithm

U. Gaenshirt¹, M. Willsch²

¹Sculptor and Researcher, Wartburgstr. 2, D-90491 Nuremberg, Germany ²Physicist, Siemens AG, D-91050 Erlangen, Germany

uli.gaenshirt@yahoo.de

The decagonal quasiperiodic succession algorithm [1], related to decagonal cluster cells [2], generates the growth of an infinite *cartwheel-type tiling*, although it acts locally.

The paper presents a new version type, applicable for coverings of octagonal clusters cells Q (Fig. 1a) which have an equivalent relation to the Gähler octagons Ω in a perfect Ammann-Beenker tiling [3]. The cell Q is based on the quasiperiodic Ammann 8-grid Γ , a superposition of four 1D-grids Γ^a , Γ^b , Γ^c , Γ^d . The used substitution factor of Γ is λ^2 (silver mean $\lambda = 1 + \sqrt{2}$). The growth process is controlled by the scale values a, b, c, d of the twin-scales $I^{a\pm}$, $I^{b\pm}$, $I^{c\pm}$, $\mathbf{I}^{d\pm}$ (in general $\mathbf{I}^{x\pm}$) which are fixed on the cell grid $\mathbf{\Gamma}^{Q}$ in a specific relation. On both scales \mathbf{I}^{x+} and I^{x-} of a twin-scale $I^{x\pm}$ two identical values x, with $x \in \{x^{def}\}$, are synchronised by a sliding ruler. Its length, \mathbf{L}^{aver} , is the average of the *q*-line grid intervals \mathbf{L}^q and \mathbf{S}^q , with respect to the ratio $\sqrt{2}$:1 of their lengths and 1: $\sqrt{2}$ of their frequency rate in an infinitely expanded grid $\Gamma^{q,\infty}$. The octagonal quasiperiodic succession algorithm distinguishes 7 neighbour transformations $h_k(Q)$ with 4 specified equations each. The algorithm correlates the twin-scales of a cell Qwith the parallel twin-scales of a cell $h_k(Q)$, converts their values and then verifies or falsifies the transformation. A verified transformation (e.g.: Fig. 1b) will be denoted $h_v(Q)$. Beginning with a *start-cell* Q_0 only cells of the form $Q_{0...\nu} = h_{\nu}(h_{\nu}(...(h_{\nu}(Q_0))...))$ are realized. As a result we propose a recursive 7x4-formula set generating a flawless infinite step-by-step

growth of an octagonal Ammann-Beenker substitution tiling, solely using local information.

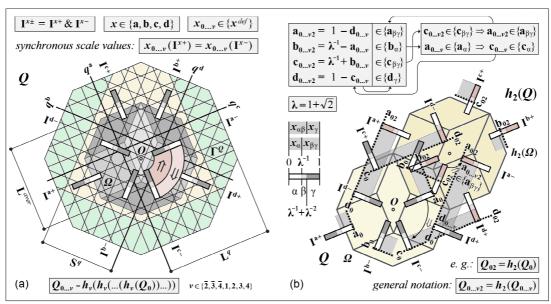


Figure 1. (a) Cluster cell Q with four twin-scales $I^{x\pm}$, (b) Twin-scale correlation of cluster cells Q and $h_2(Q)$.

- 1. U. Gaenshirt, M. Willsch, *Philos. Mag.*, **87**, (2007), 3055-3065.
- 2. P. Gummelt, Geometriae Dedicata, 62, (1996), 1-17
- 3. S. I. Ben Abraham, F. Gähler, *Phys. Rev.*, B **60**, (1999), 860-864.